Thermal decomposition mechanisms of tetraethylgermane in metal-organic chemical vapor deposition

被引:11
|
作者
El Boucham, J
Maury, F
Morancho, R
机构
[1] Ecole Natl Super Chim, CNRS INPT ESA5071, F-31077 Toulouse 4, France
[2] Fac Sci, Dept Chim, Meknes, Morocco
关键词
gas phase analyses; on-line gas chromatographic analyses; germanium thin films; pyrolysis of tetraethylgermane;
D O I
10.1016/S0165-2370(97)00077-6
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Polycrystalline Ge thin films have been grown by MOCVD in an atmospheric laminar flow reactor using GeEt4 as precursor. Hydrogen is required to remove the carbon contamination of the films which is observed under inert atmosphere. The decomposition mechanism of GeEt4 in the CVD reactor has been investigated from analyses of the gaseous by-products in a variety of chemical environments. The overall reaction is the growth of Ge thin him with formation of H-2 and C2H4 as gaseous by-products, likely by the beta-hydrogen elimination mechanism rather than radical pathways. The decomposition process under inert atmosphere is predominantly homogeneous with likely formation of intermediates as nutrient species for the film. Secondary heterogeneous processes including polymerization reactions or incomplete removal of the ligands and subsequent dehydrogenation lead to carbon contamination of the layers. In ambient H-2, the formation of C2H6, likely by the hydrogenation of C2H4, prevents the polymerization of the olefin and accounts for the beneficial influence of H-2 in this low temperature deposition process of pure Ge thin films. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:153 / 165
页数:13
相关论文
共 50 条
  • [41] Effects of temperature on ZnO hybrids grown by metal-organic chemical vapor deposition
    Kim, A-Young
    Fang, Samseok
    Lee, Do Han
    Yim, So Young
    Byun, Dongjin
    MATERIALS RESEARCH BULLETIN, 2012, 47 (10) : 2888 - 2890
  • [42] A THERMOANALYTICAL SURVEY OF PRECURSORS FOR COPPER METAL-ORGANIC CHEMICAL VAPOR-DEPOSITION
    GROSS, ME
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (08) : 2422 - 2426
  • [43] Observation of growth modes during metal-organic chemical vapor deposition of GaN
    Stephenson, GB
    Eastman, JA
    Thompson, C
    Auciello, O
    Thompson, LJ
    Munkholm, A
    Fini, P
    DenBaars, SP
    Speck, JS
    APPLIED PHYSICS LETTERS, 1999, 74 (22) : 3326 - 3328
  • [44] Heteroepitaxial evolution of AlN on GaN Grown by metal-organic chemical vapor deposition
    Gherasimova, M
    Cui, G
    Ren, Z
    Su, J
    Wang, XL
    Han, J
    Higashimine, K
    Otsuka, N
    JOURNAL OF APPLIED PHYSICS, 2004, 95 (05) : 2921 - 2923
  • [45] Improved AlScN/GaN heterostructures grown by metal-organic chemical vapor deposition
    Manz, Christian
    Leone, Stefano
    Kirste, Lutz
    Ligl, Jana
    Frei, Kathrin
    Fuchs, Theodor
    Prescher, Mario
    Waltereit, Patrick
    Verheijen, Marcel A.
    Graff, Andreas
    Simon-Najasek, Michel
    Altmann, Frank
    Fiederle, Michael
    Ambacher, Oliver
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2021, 36 (03)
  • [46] Droplet heteroepitaxy of GaN quantum dots by metal-organic chemical vapor deposition
    Gherasimova, M
    Cui, G
    Jeon, SR
    Ren, Z
    Martos, D
    Han, J
    He, Y
    Nurmikko, AV
    APPLIED PHYSICS LETTERS, 2004, 85 (12) : 2346 - 2348
  • [47] Optical properties of GaMnN films grown by metal-organic chemical vapor deposition
    Xing Hai-Ying
    Fan Guang-Han
    Yang Xue-Lin
    Zhang Guo-Yi
    ACTA PHYSICA SINICA, 2010, 59 (01) : 504 - 507
  • [48] Laser-Assisted Metal-Organic Chemical Vapor Deposition of Gallium Nitride
    Zhang, Yuxuan
    Chen, Zhaoying
    Zhang, Kaitian
    Feng, Zixuan
    Zhao, Hongping
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2021, 15 (06):
  • [49] Bandgap engineering of InSb by N incorporation by metal-organic chemical vapor deposition
    Jin, Y.J. (jinyj5@mail.sysu.edu.cn), 1600, Elsevier Ltd (756):
  • [50] METAL-ORGANIC LOW-PRESSURE CHEMICAL VAPOR-DEPOSITION OF AL
    GREEN, ML
    LEVY, RA
    NUZZO, RG
    COLEMAN, E
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1983, 130 (03) : C101 - C101