On canonical metrics on Cartan-Hartogs domains

被引:26
|
作者
Feng, Zhiming [1 ]
Tu, Zhenhan [2 ]
机构
[1] Leshan Normal Univ, Sch Math & Informat Sci, Leshan 614000, Sichuan, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Bounded symmetric domains; Cartan-Hartogs domains; Bergman kernels; Kahler metrics; TIAN-YAU-ZELDITCH; ASYMPTOTIC-EXPANSION; KAHLER-MANIFOLDS; BERGMAN KERNELS; HOLOMORPHIC-FUNCTIONS; SYMMETRIC DOMAINS; HILBERT-SPACES; QUANTIZATION; THEOREM;
D O I
10.1007/s00209-014-1316-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Cartan-Hartogs domains are defined as a class of Hartogs type domains over irreducible bounded symmetric domains. The purpose of this paper is twofold. Firstly, for a Cartan-Hartogs domain endowed with the canonical metric we obtain an explicit formula for the Bergman kernel of the weighted Hilbert space of square integrable holomorphic functions on with the weight (where is a globally defined Kahler potential for ) for , and, furthermore, we give an explicit expression of the Rawnsley's -function expansion for Secondly, using the explicit expression of the Rawnsley's -function expansion, we show that the coefficient of the Rawnsley's -function expansion for the Cartan-Hartogs domain is constant on if and only if is biholomorphically isometric to the complex hyperbolic space. So we give an affirmative answer to a conjecture raised by M. Zedda.
引用
收藏
页码:301 / 320
页数:20
相关论文
共 50 条
  • [31] Cartan-Hartogs域经典度量的等价
    殷慰萍
    王安
    中国科学(A辑:数学), 2007, (01) : 113 - 128
  • [32] Comparison theorem on Cartan-Hartogs domain of the first type
    Yin, WP
    Wang, A
    Zhao, XX
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2001, 44 (05): : 587 - 598
  • [33] Comparison theorem on Cartan-Hartogs domain of the first type
    Weiping Yin
    An Wang
    Xiaoxia Zhao
    Science in China Series A: Mathematics, 2001, 44 : 587 - 598
  • [34] The Comparison Theorem on Cartan-Hartogs Domain of the Fourth Type
    林萍
    殷慰萍
    数学进展, 2003, (01) : 124 - 126
  • [35] The Einstein-Kahler Metric on the Third Cartan-Hartogs Domain
    Zhang, Wen Juan
    Yin, Wei Ping
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (10) : 1703 - 1712
  • [36] A vanishing theorem on generalized Cartan-Hartogs domain of the second type
    Wang, An
    Zhong, Chengchen
    Lin, Bo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (01)
  • [37] The computations of Einstein-Kahler metric of Cartan-Hartogs domain
    Yin, XL
    Zhao, XX
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (Suppl 1): : 365 - 376
  • [38] Computations of Einstein-Kahler metric of Cartan-Hartogs domain
    Yin, Xiaolan
    Zhao, Xiaoxia
    Science in China, Series A: Mathematics, 2005, 48 (SUPPL.): : 365 - 376
  • [39] The computations of Einstein-Khler metric of Cartan-Hartogs domain
    YIN Xiaolan & ZHAO Xiaoxia Institute of Software
    Department of Computer Science
    Science China Mathematics, 2005, (S1) : 365 - 376
  • [40] Symplectic geometry of Cartan–Hartogs domains
    Roberto Mossa
    Michela Zedda
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 2315 - 2339