Construction of High-Resolution Bathymetric Dataset for the Mariana Trench

被引:10
|
作者
Liu, Yang [1 ,2 ,3 ]
Wu, Ziyin [1 ,2 ,3 ]
Zhao, Dineng [2 ,3 ]
Zhou, Jieqiong [2 ,3 ]
Shang, Jihong [2 ,3 ]
Wang, Mingwei [2 ,3 ]
Zhu, Chao [2 ,3 ]
Luo, Xiaowen [2 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Oceanog, Shanghai 200030, Peoples R China
[2] State Ocean Adm, Key Lab Submarine Geosci, Hangzhou 310012, Zhejiang, Peoples R China
[3] Minist Nat Resources, Inst Oceanog 2, Hangzhou 310012, Zhejiang, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
基金
中国国家自然科学基金;
关键词
Oceans; Interpolation; Data integration; Navigation; Manganese; Splines (mathematics); Mathematical model; Merge-normalization; multisource bathymetric data; DBM; SRTM; GEBCO; Mariana Trench; CONTINUOUS CURVATURE SPLINES; CALIBRATION; FUSION; MODEL;
D O I
10.1109/ACCESS.2019.2944667
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Access to reliable and accurate bathymetric data is fundamental to many marine activities. This paper proposes a merge-normalization (MN) method that is suitable for multisource bathymetric data fusion in deep ocean areas, to solve the problem of difficult to integrate high-precision digital bathymetric model (DBM) for complex sources and various resolutions of global deep ocean bathymetric data. Then we apply it to the DBM construction of the Mariana Trench. The method combines multibeam, single-beam, and electronic navigational chart data with Shuttle Radar Topography Mission (SRTM) dataset by using the workflow of merging and normalizing, which can fill the data gaps while preserving topographic details in high-resolution bathymetric data. Compared with the widely used General Bathymetric Chart of the Oceans (GEBCO) dataset, the Mariana Trench dataset constructed in this study demonstrated improved accuracy, resolution, and topographic detail, highlighting the value of the application of the method and of its development potential.
引用
收藏
页码:142441 / 142450
页数:10
相关论文
共 50 条
  • [41] A high-resolution dataset of water bodies distribution over the Tibetan Plateau
    Chen, Zhengchao
    Guo, Linan
    Wu, Yanhong
    Zhang, Bing
    Chen, Pan
    Yang, Xuan
    Guo, Jiawei
    SCIENTIFIC DATA, 2024, 11 (01)
  • [42] A twenty-year dataset of high-resolution maize distribution in China
    Qiongyan Peng
    Ruoque Shen
    Xiangqian Li
    Tao Ye
    Jie Dong
    Yangyang Fu
    Wenping Yuan
    Scientific Data, 10
  • [43] Human physiome based on the high-resolution dataset of human body structure
    Liu, Qian
    Wu, Bo
    Zeng, Shaoqun
    Luo, Qingming
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2008, 18 (08) : 921 - 925
  • [44] Individual Brain Charting, a high-resolution fMRI dataset for cognitive mapping
    Pinho, Ana Luisa
    Amadon, Alexis
    Ruest, Torsten
    Fabre, Murielle
    Dohmatob, Elvis
    Denghien, Isabelle
    Ginisty, Chantal
    Becuwe-Desmidt, Severine
    Roger, Severine
    Laurier, Laurence
    Joly-Testault, Veronique
    Mediouni-Cloarec, Gaelle
    Double, Christine
    Martins, Bernadette
    Pinel, Philippe
    Eger, Evelyn
    Varoquaux, Gael
    Pallier, Christophe
    Dehaene, Stanislas
    Hertz-Pannier, Lucie
    Thirion, Bertrand
    SCIENTIFIC DATA, 2018, 5
  • [45] Individual Brain Charting, a high-resolution fMRI dataset for cognitive mapping
    Ana Luísa Pinho
    Alexis Amadon
    Torsten Ruest
    Murielle Fabre
    Elvis Dohmatob
    Isabelle Denghien
    Chantal Ginisty
    Séverine Becuwe-Desmidt
    Séverine Roger
    Laurence Laurier
    Véronique Joly-Testault
    Gaëlle Médiouni-Cloarec
    Christine Doublé
    Bernadette Martins
    Philippe Pinel
    Evelyn Eger
    Gaël Varoquaux
    Christophe Pallier
    Stanislas Dehaene
    Lucie Hertz-Pannier
    Bertrand Thirion
    Scientific Data, 5
  • [46] A high-resolution climate simulation dataset for the past 540 million years
    Li, Xiang
    Hu, Yongyun
    Guo, Jiaqi
    Lan, Jiawenjing
    Lin, Qifan
    Bao, Xiujuan
    Yuan, Shuai
    Wei, Mengyu
    Li, Zhibo
    Man, Kai
    Yin, Zihan
    Han, Jing
    Zhang, Jian
    Zhu, Chenguang
    Zhao, Zhouqiao
    Liu, Yonggang
    Yang, Jun
    Nie, Ji
    SCIENTIFIC DATA, 2022, 9 (01)
  • [47] OpenEarthMap: A Benchmark Dataset for Global High-Resolution Land Cover Mapping
    Xia, Junshi
    Yokoya, Naoto
    Adriano, Bruno
    Broni-Bediako, Clifford
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 6243 - 6253
  • [48] UASOL, a large-scale high-resolution outdoor stereo dataset
    Bauer, Zuria
    Gomez-Donoso, Francisco
    Cruz, Edmanuel
    Orts-Escolano, Sergio
    Cazorla, Miguel
    SCIENTIFIC DATA, 2019, 6 (1)
  • [49] A twenty-year dataset of high-resolution maize distribution in China
    Peng, Qiongyan
    Shen, Ruoque
    Li, Xiangqian
    Ye, Tao
    Dong, Jie
    Fu, Yangyang
    Yuan, Wenping
    SCIENTIFIC DATA, 2023, 10 (01)
  • [50] PDFID: A high-resolution flood inundation dataset with a long time series
    Chen, Lai
    Chen, Zeqiang
    Chen, Nengcheng
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2024, 52