FedTriNet: A Pseudo Labeling Method with Three Players for Federated Semi-supervised Learning

被引:20
|
作者
Che, Liwei [1 ]
Long, Zewei [2 ]
Wang, Jiaqi [1 ]
Wang, Yaqing [3 ]
Xiao, Houping [4 ]
Ma, Fenglong [1 ]
机构
[1] Penn State Univ, Coll IST, State Coll, PA 16801 USA
[2] Univ Illinois, Dept Comp Sci, Champaign, IL USA
[3] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN USA
[4] Georgia State Univ, Inst Insight, Atlanta, GA USA
关键词
federated learning; semi-supervised learning; pseudo labeling;
D O I
10.1109/BigData52589.2021.9671374
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated Learning has shown great potentials for the distributed data utilization and privacy protection. Most existing federated learning approaches focus on the supervised setting, which means all the data stored in each client has labels. However, in real-world applications, the client data are impossible to be fully labeled. Thus, how to exploit the unlabeled data should be a new challenge for federated learning. Although a few studies are attempting to overcome this challenge, they may suffer from information leakage or misleading information usage problems. To tackle these issues, in this paper, we propose a novel federated semi-supervised learning method named FedTriNet, which consists of two learning phases. In the first phase, we pre-train FedTriNet using labeled data with FedAvg. In the second phase, we aim to make most of the unlabeled data to help model learning. In particular, we propose to use three networks and a dynamic quality control mechanism to generate high-quality pseudo labels for unlabeled data, which are added to the training set. Finally, FedTriNet uses the new training set to retrain the model. Experimental results on three publicly available datasets show that the proposed FedTriNet outperforms state-of-the-art baselines under both IID and Non-IID settings.
引用
收藏
页码:715 / 724
页数:10
相关论文
共 50 条
  • [41] Prototype-Guided Pseudo Labeling for Semi-Supervised Text Classification
    Yang, Weiyi
    Zhang, Richong
    Chen, Junfan
    Wang, Lihong
    Kim, Jaein
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 16369 - 16382
  • [42] AN OPERATOR METHOD FOR SEMI-SUPERVISED LEARNING
    Lu, Wei-Jun
    Bai, Yan
    Tang, Yi
    Tao, Yan-Fang
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, 2009, : 123 - +
  • [43] Alternative Pseudo-Labeling for Semi-Supervised Automatic Speech Recognition
    Zhu H.
    Gao D.
    Cheng G.
    Povey D.
    Zhang P.
    Yan Y.
    IEEE/ACM Transactions on Audio Speech and Language Processing, 2023, 31 : 3320 - 3330
  • [44] Semi-supervised Malicious Domain Detection Based on Meta Pseudo Labeling
    Gao, Yi
    Yuan, Fangfang
    Yang, Jinglin
    Wang, Dakui
    Cao, Cong
    Liu, Yanbing
    COMPUTATIONAL SCIENCE, ICCS 2024, PT II, 2024, 14833 : 312 - 324
  • [45] A federated semi-supervised learning approach for network traffic classification
    Jin, Zhiping
    Liang, Zhibiao
    He, Meirong
    Peng, Yao
    Xue, Hanxiao
    Wang, Yu
    INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT, 2023, 33 (03)
  • [46] SemiGraphFL: Semi-supervised Graph Federated Learning for Graph Classification
    Tao, Ye
    Li, Ying
    Wu, Zhonghai
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVII, PPSN 2022, PT I, 2022, 13398 : 474 - 487
  • [47] Network traffic classification based on federated semi-supervised learning
    Wang, Zixuan
    Li, Zeyi
    Fu, Mengyi
    Ye, Yingchun
    Wang, Pan
    JOURNAL OF SYSTEMS ARCHITECTURE, 2024, 149
  • [48] Intrusion detection for Softwarized Networks with Semi-supervised Federated Learning
    Aouedi, Ons
    Piamrat, Kandaraj
    Muller, Guillaume
    Singh, Kamal
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 5244 - 5249
  • [49] An Enhancing Semi-Supervised Federated Learning Framework for Internet of Vehicles
    Su, Xiangqing
    Huo, Yan
    Wang, Xiaoxuan
    Jing, Tao
    2023 IEEE 98TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-FALL, 2023,
  • [50] CHESSFL: Clustering Hierarchical Embeddings for Semi-Supervised Federated Learning
    Farcas, Allen-Jasmin
    Lee, Myungjin
    Payani, Ali
    Latapie, Hugo
    Kompella, Ramana Rao
    Marculescu, Radu
    9TH ACM/IEEE CONFERENCE ON INTERNET OF THINGS DESIGN AND IMPLEMENTATION, IOTDI 2024, 2024, : 122 - 133