Multi-objective quantum-behaved particle swarm optimization for economic environmental hydrothermal energy system scheduling

被引:95
|
作者
Feng, Zhong-kai [1 ]
Niu, Wen-jing [2 ]
Cheng, Chun-tian [2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Hydropower & Informat Engn, Wuhan 430074, Peoples R China
[2] Dalian Univ Technol, Inst Hydropower & Hydroinformat, Dalian 116024, Peoples R China
关键词
Multi-objective optimization; Hydrothermal scheduling; Quantum-behaved particle swarm optimization; Chaotic mutation; Constraint handling method; DIFFERENTIAL EVOLUTION ALGORITHM; PREDATOR-PREY OPTIMIZATION; GENETIC ALGORITHM; CULTURAL ALGORITHM; WIND POWER; EMISSION; DISPATCH; RESERVOIR; MARKETS; MODEL;
D O I
10.1016/j.energy.2017.05.013
中图分类号
O414.1 [热力学];
学科分类号
摘要
With increasing attention paid to energy and environment in recent years, the hydrothermal scheduling considering economic and environmental objectives is becoming one of the most important optimization problems in power system. With two competing objectives and a set of operation constraints, the economic environmental hydrothermal scheduling problem is classified as a typical multi-objective nonlinear constrained optimization problem. Thus, in order to efficiently resolve this problem, the multi-objective quantum-behaved particle swarm optimization (MOQPSO) is presented in this paper. In MOQPSO, the elite archive set is adopted to conserve Pareto optimal solutions and provide multiple evolutionary directions for individuals, while the neighborhood searching and chaotic mutation strategies are used to enhance the search capability and diversity of population. Furthermore, a novel constraint handling method is designed to adjust the constraint violation of hydro and thermal plants, respectively. In order to verify its effectiveness, the MOQPSO is applied to a classical hydrothermal system with four hydropower plants and three thermal plants. The simulations show that the proposed method has competitive performance compared with several traditional methods. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:165 / 178
页数:14
相关论文
共 50 条
  • [41] Quantum-behaved particle swarm optimization with Cauchy disturbance for power economic dispatch
    Xu, Lei
    Zhang, Lan
    Dang, Jie
    2012 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL 2, 2012, : 268 - 271
  • [42] Quantum-behaved particle swarm optimization based on solitons
    Saeed Fallahi
    Mohamadreza Taghadosi
    Scientific Reports, 12
  • [43] Quantum-behaved particle swarm optimization based on solitons
    Fallahi, Saeed
    Taghadosi, Mohamadreza
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [44] Quantum-behaved particle swarm optimization with chaotic search
    Yang, Kaiqiao
    Nomura, Hirosato
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2008, E91D (07): : 1963 - 1970
  • [45] Quantum-behaved Particle Swarm Optimization clustering algorithm
    Sun, Jun
    Xu, Wenbo
    Ye, Bin
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2006, 4093 : 340 - 347
  • [46] An Improved Quantum-Behaved Particle Swarm Optimization Algorithm
    Yang, Jie
    Xie, Jiahua
    2010 2ND INTERNATIONAL ASIA CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS (CAR 2010), VOL 2, 2010, : 159 - 162
  • [47] An improved quantum-behaved particle swarm optimization algorithm
    Li, Panchi
    Xiao, Hong
    APPLIED INTELLIGENCE, 2014, 40 (03) : 479 - 496
  • [48] Quantum-behaved Particle Swarm Optimization with mutation operator
    Liu, J
    Xu, WB
    Sun, J
    ICTAI 2005: 17TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, : 237 - 240
  • [49] Parameter selection of quantum-behaved Particle Swarm Optimization
    Sun, J
    Xu, WB
    Liu, J
    ADVANCES IN NATURAL COMPUTATION, PT 3, PROCEEDINGS, 2005, 3612 : 543 - 552
  • [50] An improved cooperative quantum-behaved particle swarm optimization
    Li, Yangyang
    Xiang, Rongrong
    Jiao, Licheng
    Liu, Ruochen
    SOFT COMPUTING, 2012, 16 (06) : 1061 - 1069