Dynamic Single-Source Shortest Paths in Erdos-Renyi Random Graphs

被引:0
|
作者
Ding, Wei [1 ]
Qiu, Ke [2 ]
机构
[1] Zhejiang Univ Water Resources & Elect Power, Hangzhou 310018, Zhejiang, Peoples R China
[2] Brock Univ, Dept Comp Sci, St Catharines, ON L2S 3A1, Canada
关键词
Dynamic SSSP; Weight increase; Edge deletion; Random graph; FASTER;
D O I
10.1007/978-3-319-26626-8_39
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper studies the dynamic single-source shortest paths (SSSP) in Erdos-Renyi random graphs generated by G(n, p) model. In 2014, Ding and Lin (AAIM 2014, LNCS 8546, 197-207) first considered the dynamic SSSP in general digraphs with arbitrary positive weights, and devised a nontrivial local search algorithm named DSPI which takes at most O(n.max{1, n log n/m}) expected update time to handle a single weight increase, where n is the number of nodes and m is the number of edges in the digraph. DSPI also works on undirected graphs. This paper analyzes the expected update time of DSPI dealing with edge weight increases or edge deletions in Erdos-Renyi (a.k.a., G(n, p)) random graphs. For weighted G(n, p) random graphs with arbitrary positive edge weights, DSPI takes at most O(h(T-s)) expected update time to deal with a single edge weight increase as well as O(pn(2)h(T-s)) total update time, where h(T-s) is the height of input SSSP tree T-s. For G(n, p) random graphs, DSPI takes O(ln n) expected update time to handle a single edge deletion as well as O(pn(2)ln n) total update time when 20 ln n/n <= p < root 2 lnn/n, and O(1) expected update time to handle a single edge deletion as well as O(pn(2)) total update time when p > root 2 lnn/n. Specifically, DSPI takes the least total update time of O(n ln nh(T-s)) for weighted G(n, p) random graphs with p = c ln n/n, c > 1 as well as O(n(3/2) (ln n)(1/2)) for G(n, p) random graphs with p = c root ln n/n, c > root 2.
引用
收藏
页码:537 / 550
页数:14
相关论文
共 50 条
  • [21] Fluctuations of the Magnetization for Ising Models on Dense Erdos-Renyi Random Graphs
    Kabluchko, Zakhar
    Lowe, Matthias
    Schubert, Kristina
    JOURNAL OF STATISTICAL PHYSICS, 2019, 177 (01) : 78 - 94
  • [22] Spectra of adjacency and Laplacian matrices of inhomogeneous Erdos-Renyi random graphs
    Chakrabarty, Arijit
    Hazra, Rajat Subhra
    den Hollander, Frank
    Sfragara, Matteo
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2021, 10 (01)
  • [23] Evolution of tag-based cooperation on Erdos-Renyi random graphs
    Lima, F. W. S.
    Hadzibeganovic, Tarik
    Stauffer, Dietrich
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2014, 25 (06):
  • [24] Fluctuations for the partition function of Ising models on Erdos-Renyi random graphs
    Kabluchko, Zakhar
    Loewe, Matthias
    Schubert, Kristina
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (04): : 2017 - 2042
  • [25] On Reversible Cascades in Scale-Free and Erdos-Renyi Random Graphs
    Chang, Ching-Lueh
    Wang, Chao-Hong
    THEORY OF COMPUTING SYSTEMS, 2013, 52 (02) : 303 - 318
  • [26] A single-source shortest path algorithm for dynamic graphs
    Alshammari, Muteb
    Rezgui, Abdelmounaam
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 1063 - 1068
  • [27] Concentration of the Kirchhoff index for Erdos-Renyi graphs
    Boumal, Nicolas
    Cheng, Xiuyuan
    SYSTEMS & CONTROL LETTERS, 2014, 74 : 74 - 80
  • [28] Delocalization Transition for Critical Erdos-Renyi Graphs
    Alt, Johannes
    Ducatez, Raphael
    Knowles, Antti
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 388 (01) : 507 - 579
  • [29] Shotgun assembly of unlabeled Erdos-Renyi graphs
    Huang, Han
    Tikhomirov, Konstantin
    PROBABILITY THEORY AND RELATED FIELDS, 2025,
  • [30] EXTREMAL EIGENVALUES OF CRITICAL ERDOS-RENYI GRAPHS
    Alt, Johannes
    Ducatez, Raphael
    Knowles, Antti
    ANNALS OF PROBABILITY, 2021, 49 (03): : 1347 - 1401