Analysis of SNR Enhancement in 1.5T MRI by using Metasurfaces

被引:0
|
作者
Das, Priyanka [1 ]
Gupta, Jegyasu [1 ]
Sikdar, Debabrata [1 ]
Bhattacharjee, Ratnajit [1 ]
机构
[1] IIT Guwahati, EEE Dept, Gauhati, India
来源
2022 IEEE MICROWAVES, ANTENNAS, AND PROPAGATION CONFERENCE, MAPCON | 2022年
关键词
SNR enhancement; magnetic field enhancement; 1.5T MRI; metasurface;
D O I
10.1109/MAPCON56011.2022.10046946
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Magnetic Resonance Imaging (MRI) is a clinical diagnostic tool for detection of malfunctional tissues and organs in a human body. The image resolution and scanning efficiency of MRI are directly dependent on signal-to-noise ratio (SNR). A higher SNR can be obtained by increasing the RF magnetic field which is accomplished by using metamaterials or metasurfaces. Here we present a thin metasurface which can be used as an 'add-on' in clinical 1.5T MRI for its SNR enhancement. A convoluted cross-type structure has been employed for increasing the magnetic flux density in the region of interest (ROI) by local confinement of electromagnetic fields in the near field region. A dielectric phantom made up of saline solution is integrated with the metasurface to demonstrate the enhancement of magnetic flux density up to a depth of 105 mm. The metasurface placed behind a human head bio-model, to emulate virtual brain-scan, results in SNR enhancement by a factor of 400 on the surface of the phantom.
引用
收藏
页码:444 / 448
页数:5
相关论文
共 50 条
  • [31] Effects of Combining Field Strengths on Auditory Functional MRI Group Analysis: 1.5T and 3T
    Han, Kihwan
    Talavage, Thomas M.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2011, 34 (06) : 1480 - 1488
  • [32] A comparison of liver fat fraction measurement on MRI at 3T and 1.5T
    Athithan, Lavanya
    Gulsin, Gaurav S.
    House, Michael J.
    Pang, Wenjie
    Brady, Emer M.
    Wormleighton, Joanne
    Parke, Kelly S.
    Graham-Brown, Matthew
    St Pierre, Tim G.
    Levelt, Eylem
    McCann, Gerry P.
    PLOS ONE, 2021, 16 (07):
  • [33] Modeling of MRI-induced Heating in Pacemaker Patients during 1.5T MRI Scans
    Mouchawar, G.
    Sison, S.
    Chen, S.
    Min, X.
    Chen, J.
    Nyenhuis, J.
    Gutfinger, D.
    Williamson, R.
    2015 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2015, 42 : 769 - 772
  • [34] Evaluation of a Clinical 1.5T MRI for Prostate Cancer MRS Imaging Using a In Vivo Tumor Model
    Chen, X.
    Chen, L.
    Hensley, H.
    Cvetkovic, D.
    Zhang, C.
    Fan, J.
    Ma, C.
    MEDICAL PHYSICS, 2014, 41 (06) : 381 - 381
  • [35] Numerical Study on MRI RF Heating for Circular External Fixators under 1.5T MRI
    Huang, Xin
    Wang, Zhichao
    Chen, Ji
    Zheng, Jianfeng
    2018 IEEE SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, SIGNAL INTEGRITY AND POWER INTEGRITY (EMC, SI & PI), 2018, : 280 - 285
  • [36] Treatment Assessment for Pulsed Focused Ultrasound Therapy of Prostate Tumor Using a Clinical 1.5T MRI
    Chen, X.
    Cvetkovic, D.
    Chen, L.
    Ma, C.
    MEDICAL PHYSICS, 2011, 38 (06)
  • [37] Early Health Economic Analysis of 1.5T MRI-guided Radiotherapy for Localized Prostate Cancer
    Hehakaya, C.
    van Zyp, J. R. van der Voort
    Vanneste, B. G.
    Grutters, J. P.
    Grobbee, D. E.
    Verkooijen, H. M.
    Frederix, G. W.
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S1082 - S1083
  • [38] MRI-guided HDR prostate brachytherapy in standard 1.5T scanner
    Ménard, C
    Susil, RC
    Choyke, P
    Gustafson, GS
    Kammerer, W
    Ning, H
    Miller, RW
    Ullman, KL
    Crouse, NS
    Smith, S
    Lessard, E
    Pouliot, J
    Wright, V
    McVeigh, E
    Coleman, CN
    Camphausen, K
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2004, 59 (05): : 1414 - 1423
  • [39] 1.5T MRI不同序列金属伪影程度比较
    刘小婷
    曾繁汉
    基层医学论坛, 2021, 25 (20) : 2911 - 2912
  • [40] Automatic deactivation design for phased array surface probe in 1.5T MRI
    Vlachos, Fotios N.
    Garetsos, Anastasios D.
    Uzunoglu, Nikolaos K.
    BIODEVICES 2008: PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON BIOMEDICAL ELECTRONICS AND DEVICES, VOL 1, 2008, : 160 - 163