Harnessing no-photon exciton generation chemistry to engineer semiconductor nanostructures

被引:12
|
作者
Beke, David [1 ]
Karolyhazy, Gyula [1 ,2 ]
Czigany, Zsolt [3 ]
Bortel, Gabor [1 ]
Kamaras, Katalin [1 ]
Gali, Adam [1 ,4 ]
机构
[1] Hungarian Acad Sci, Inst Solid State Phys & Opt, Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Fac Chem Technol & Biotechnol, Muegyet Rkp 7-9, H-1111 Budapest, Hungary
[3] Hungarian Acad Sci, Inst Tech Phys & Mat Sci, Ctr Energy Res, Konkoly Thege M Ut 29-33, H-1121 Budapest, Hungary
[4] Budapest Univ Technol & Econ, Dept Atom Phys, Budafoki Ut 8, H-1111 Budapest, Hungary
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
CARBIDE QUANTUM DOTS; REDOX REACTIONS; SILICON; LUMINESCENCE; IDENTIFICATION; OXIDATION; RADICALS; OXYGEN;
D O I
10.1038/s41598-017-10751-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Production of semiconductor nanostructures with high yield and tight control of shape and size distribution is an immediate quest in diverse areas of science and technology. Electroless wet chemical etching or stain etching can produce semiconductor nanoparticles with high yield but is limited to a few materials because of the lack of understanding the physical-chemical processes behind. Here we report a no-photon exciton generation chemistry (NPEGEC) process, playing a key role in stain etching of semiconductors. We demonstrate NPEGEC on silicon carbide polymorphs as model materials. Specifically, size control of cubic silicon carbide nanoparticles of diameter below ten nanometers was achieved by engineering hexagonal inclusions in microcrystalline cubic silicon carbide. Our finding provides a recipe to engineer patterned semiconductor nanostructures for a broad class of materials.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] THz Studies of Charge and Exciton Dynamics in Semiconductor Nanostructures
    Bonn, Mischa
    2009 CONFERENCE ON LASERS AND ELECTRO-OPTICS AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2009), VOLS 1-5, 2009, : 716 - 717
  • [22] Modulation of exciton transition in crystalline nanostructures of an organic semiconductor
    Yuyan Han
    Liang Cao
    Shusheng Pan
    Xiaotao Xu
    Hui Han
    Faqiang Xu
    Journal of Materials Science, 2018, 53 : 1326 - 1334
  • [23] Electron and photon confinement in semiconductor nanostructures: Devices
    Weisburg, C
    Benisty, H
    ELECTRON AND PHOTON CONFINEMENT IN SEMICONDUCTOR NANOSTRUCTURES, 2003, 150 : 355 - 410
  • [24] Role of Semiconductor Nanostructures in Photon Upconversion Applications
    Cleveland, Jill M.
    Welsch, Tory A.
    Chase, D. Bruce
    Doty, Matthew F.
    ACS APPLIED OPTICAL MATERIALS, 2023, 1 (04): : 810 - 824
  • [25] Photon-assisted transport in semiconductor nanostructures
    Platero, G
    Aguado, R
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2004, 395 (1-2): : 1 - 157
  • [26] PHYS 210-Multiple exciton generation in semiconductor quantum dots and applications to third generation solar photon conversion
    Nozik, Arthur J.
    Ellingson, Randy J.
    Beard, Matthew C.
    Luther, Joseph
    Johnson, Justin C.
    Law, Matthew D.
    Song, Qing
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2008, 235
  • [27] Strong exciton–photon coupling in an organic semiconductor microcavity
    D. G. Lidzey
    D. D. C. Bradley
    M. S. Skolnick
    T. Virgili
    S. Walker
    D. M. Whittaker
    Nature, 1998, 395 : 53 - 55
  • [28] Coherent optical spectroscopy of charged exciton complexes in semiconductor nanostructures
    Akimov, Ilya A.
    Poltavtsev, Sergey V.
    Salewski, Matthias
    Yugova, Irina A.
    Karczewski, Grzegorz
    Wiater, Maciej
    Wojtowicz, Tomasz
    Reichelt, Matthias
    Meier, Torsten
    Yakovlev, Dmitri R.
    Bayer, Manfred
    ULTRAFAST PHENOMENA AND NANOPHOTONICS XXII, 2018, 10530
  • [29] Exciton-Plasmon Interactions in Metal-Semiconductor Nanostructures
    Achermann, Marc
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (19): : 2837 - 2843
  • [30] Size-dependent exciton binding energy in semiconductor nanostructures
    He, Yan
    Hu, Sumei
    Zhu, Weiling
    Ouyang, Gang
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (12)