Some algebraic constructions in rational homotopy theory

被引:2
|
作者
Brown, EH
Szczarba, RH
机构
[1] BRANDEIS UNIV,DEPT MATH,WALTHAM,MA 02254
[2] YALE UNIV,NEW HAVEN,CT 06520
关键词
function space; minimal models; homotopy groups;
D O I
10.1016/S0166-8641(97)00012-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we describe constructions in the category of differential graded commutative algebras over the rational numbers Q which are analogs of the space F(X, Y) of continuous maps of X to Y, the component F(X, Y, f) containing f is an element of F(X, Y), fibrations, induced fibrations, the space Gamma(pi) of sections of a fibration pi:E --> X, and the component Gamma(pi, sigma) containing sigma is an element of Gamma(pi). As a focus, we address the problem of expressing pi*(F(X, Y, f)) = Hom(pi*(F(X, Y, f)), Q) in terms of differential graded algebra models for X and Y. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:251 / 258
页数:8
相关论文
共 50 条
  • [31] Mysterious Triality and Rational Homotopy Theory
    Hisham Sati
    Alexander A. Voronov
    Communications in Mathematical Physics, 2023, 400 : 1915 - 1960
  • [32] Mysterious Triality and Rational Homotopy Theory
    Sati, Hisham
    Voronov, Alexander A. A.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 400 (03) : 1915 - 1960
  • [33] On equivariant disconnected rational homotopy theory
    Golasinski, Marek
    GEORGIAN MATHEMATICAL JOURNAL, 2010, 17 (02) : 229 - 240
  • [34] Rational homotopy theory of automorphisms of manifolds
    Berglund, Alexander
    Madsen, Ib
    ACTA MATHEMATICA, 2020, 224 (01) : 67 - 185
  • [35] Formality and finiteness in rational homotopy theory
    Suciu, Alexander I.
    EMS SURVEYS IN MATHEMATICAL SCIENCES, 2023, 10 (02) : 321 - 403
  • [36] Complete intersections in rational homotopy theory
    Greenlees, J. P. C.
    Hess, K.
    Shamir, S.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (04) : 636 - 663
  • [37] Disconnected equivariant rational homotopy theory
    Golasinski, M
    APPLIED CATEGORICAL STRUCTURES, 2002, 10 (01) : 23 - 33
  • [38] Rational Homotopy Theory and Nonnegative Curvature
    Jian Zhong Pan
    Shao Bing Wu
    Acta Mathematica Sinica, 2006, 22 : 23 - 26
  • [39] RATIONAL HOMOTOPY-THEORY OF FIBRATIONS
    DASILVEIRA, FEA
    PACIFIC JOURNAL OF MATHEMATICS, 1984, 113 (01) : 1 - 34
  • [40] Rational homotopy theory: A brief introduction
    Hess, Kathryn
    Interactions Between Homotopy Theory and Algebra, 2007, 436 : 175 - 202