Nonequilibrium relaxation analysis of frustrated XY models in two dimensions

被引:0
|
作者
Ozeki, Y [1 ]
Ito, N [1 ]
机构
[1] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We apply the nonequilibrium relaxation (NER) method to the fully-frustrated XY models on square and triangular lattices, in which the possibility of two different transitions, the chiral transition and the Kosterlitz-Thouless one, have been discussed. Further, we calculate the NER functions of fluctuations for these models, and analyze the universality class of them.
引用
收藏
页码:42 / 47
页数:6
相关论文
共 50 条
  • [21] Nonexponential relaxation in fully frustrated models
    Fierro, A
    deCandia, A
    Coniglio, A
    PHYSICAL REVIEW E, 1997, 56 (05): : 4990 - 4997
  • [22] Frustrated Classical Heisenberg and XY Models in Two Dimensions with Nearest-Neighbor Biquadratic Exchange: Exact Solution for the Ground-State Phase Diagram
    Hayden, L. X.
    Kaplan, T. A.
    Mahanti, S. D.
    PHYSICAL REVIEW LETTERS, 2010, 105 (04)
  • [23] Incommensurability in the frustrated two-dimensional XY model
    Denniston, C
    Tang, C
    PHYSICAL REVIEW B, 1999, 60 (05): : 3163 - 3168
  • [24] SYMMETRY ANALYSIS AND MONTE-CARLO STUDY OF A FRUSTRATED ANTIFERROMAGNETIC PLANAR (XY) MODEL IN 2 DIMENSIONS
    LEE, DH
    JOANNOPOULOS, JD
    NEGELE, JW
    LANDAU, DP
    PHYSICAL REVIEW B, 1986, 33 (01): : 450 - 475
  • [25] FRUSTRATED ISING-MODELS IN 2 DIMENSIONS
    WOLFF, WF
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1983, 38 (03) : 217 - 224
  • [26] UNIFORMLY FRUSTRATED XY MODELS - GROUND-STATE CONFIGURATIONS
    TEITEL, S
    PHYSICA B, 1988, 152 (1-2): : 30 - 31
  • [27] FRUSTRATED XY MODELS WITH ACCIDENTAL DEGENERACY OF THE GROUND-STATE
    KORSHUNOV, SE
    VALLAT, A
    BECK, H
    PHYSICAL REVIEW B, 1995, 51 (05): : 3071 - 3080
  • [28] Critical behavior of the fully frustrated two dimensional XY model
    Lima, AB
    Costa, B
    BRAZILIAN JOURNAL OF PHYSICS, 2004, 34 (2A) : 403 - 404
  • [29] Critical properties of the two dimensional fully frustrated XY model
    Sugimoto, K
    Ebina, K
    STATISTICAL PHYSICS, 2000, 519 : 374 - 376
  • [30] Nonequilibrium dynamics of fully frustrated Ising models at T=0
    Karsai, M.
    d'Auriac, J-Ch Angles
    Igloi, F.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,