Characterization of two- and three-dimensional morphological properties of fragmented sand grains

被引:33
|
作者
Zheng, Wenbo [1 ,2 ]
Hu, Xinli [1 ]
Tannant, Dwayne D. [2 ]
Zhang, Kai [3 ]
Xu, Cong [2 ]
机构
[1] China Univ Geosci, Fac Engn, Wuhan 430074, Hubei, Peoples R China
[2] Univ British Columbia, Sch Engn, Kelowna, BC V1V 1V7, Canada
[3] Shenzhen Univ, Inst Deep Underground Sci & Green Energy, Shenzhen, Guangdong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
2D morphological properties; 3D morphological properties; Correlation; Grain imaging; Discrete element modelling; Specific surface area; CRUSHING CHARACTERISTICS; PARTICLE-SHAPE; SIZE; ROUNDNESS; QUANTIFICATION; CONDUCTIVITY; SPHERICITY; SURFACE;
D O I
10.1016/j.enggeo.2019.105358
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The geometric shape and size of sand grains are key factors that affect the mechanical and hydraulic properties of sandy soils. These morphological properties are commonly quantified via analysis of two-dimensional microscopy photos while three-dimensional measurements, such as using X-ray micro-computed tomography, are being adopted to understand and characterize the behaviours of granular materials. This study explores the relationship between two- and three-dimensional morphological properties for fragmented sand grains. Three-dimensional morphological properties of representative grains with different combinations of elongation and flatness were measured with X-ray micro-computed tomography. A framework that integrates discrete element modelling and sand grain imaging is introduced for obtaining the two-dimensional vertical projections of these grains after freefalls onto a horizontal surface. Matlab code was developed to extract the 2D silhouette outline of each grain for measuring 2D morphological properties. The relationships between 2D and 3D morphological properties were quantified, and useful empirical equations were developed. The results show that five 3D morphological properties (length, breadth, volume, surface area, and elongation) can be estimated from the 2D morphological properties of length2D, breadth2D, projection area, and aspect ratio. Estimates of 3D morphological properties including sphericity, volume, and surface area can be unproved when flatness is known. A practical approach to obtain flatness from the 2D morphological analysis results is provided. The newly developed equations were evaluated using virtual soil samples and compared with previously published data for natural grains. Use of the developed equations to estimate specific surface area and permeability of soils was demonstrated.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Two- and three-dimensional stacking of chiral alcohols
    Alonso, C
    Artzner, F
    Suchod, B
    Berthault, M
    Konovalov, O
    Pécaut, J
    Smilgies, D
    Renault, A
    JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (51): : 12778 - 12785
  • [32] The caustics of two- and three-dimensional parabolic reflectors
    Bell, C. G.
    Ockendon, H.
    Ockendon, J. R.
    JOURNAL OF OPTICS, 2010, 12 (06)
  • [33] Dispersive Effects in Two- and Three-Dimensional Peridynamics
    Coclite, A.
    Coclite, G. M.
    Fanizza, G.
    Maddalena, F.
    ACTA APPLICANDAE MATHEMATICAE, 2023, 187 (01)
  • [34] A comparison of two- and three-dimensional wave breaking
    Nepf, HM
    Wu, CH
    Chan, ES
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 1998, 28 (07) : 1496 - 1510
  • [35] Two- and three-dimensional asteroid impact simulations
    Gisler, GR
    Weaver, RP
    Mader, CL
    Gittings, ML
    COMPUTING IN SCIENCE & ENGINEERING, 2004, 6 (03) : 46 - 55
  • [36] Quasiparticle interactions in two- and three-dimensional superconductors
    Coffey, D
    EUROPHYSICS LETTERS, 1997, 40 (05): : 563 - 568
  • [37] Invariants of two- and three-dimensional hyperbolic equations
    Tsaousi, C.
    Sophocleous, C.
    Tracina, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 349 (02) : 516 - 525
  • [38] Map fragmentation in two- and three-dimensional environments
    Yamahachi, Homare
    Moser, May-Britt
    Moser, Edvard I.
    BEHAVIORAL AND BRAIN SCIENCES, 2013, 36 (05) : 569 - 570
  • [39] Two- and Three-dimensional Arrays of Magnetic Microspheres
    Weijia Wen
    Ning Wang
    D. W. Zheng
    C. Chen
    K. N. Tu
    Journal of Materials Research, 1999, 14 : 1186 - 1189
  • [40] Dispersive Effects in Two- and Three-Dimensional Peridynamics
    A. Coclite
    G. M. Coclite
    G. Fanizza
    F. Maddalena
    Acta Applicandae Mathematicae, 2023, 187