Close-to-zero eigenvalues of the rooted product of graphs

被引:1
|
作者
Rosenfeld, Vladimir R. [1 ]
Yang, Yujun [2 ]
机构
[1] Ariel Univ, Dept Comp Sci & Math, IL-4070000 Ariel, Israel
[2] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Rooted product of graphs; Median eigenvalues; Energy gap;
D O I
10.1007/s10910-021-01250-6
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The construction of vertex-decorated graphs can be used to produce derived graphs with specific eigenvalues from undecorated graphs, which themselves do not have such eigenvalues. An instance of a decorated graph is the rooted productG(H) of graphs G and H. Let F = (V, E) be a molecular graph with the vertex set V and the edge set E(vertical bar V vertical bar=n;vertical bar E vertical bar = m), and let n(+) = n(-)(n(+) + n(-)= n), where n(+) and n(-) are the numbers of positive and negative eigenvalues, respectively. Then, in the spectrum of the eigenvalues of F, two minimum-modulus eigenvalues, positive lambda(+) and negative lambda(-), are of special interest because the value delta=lambda(+)-lambda(-) determines the energy gap. In quantum chemistry, the energy gap delta is associated with the energy of an electron transfer from the highest occupied molecular orbital to the lowest unoccupied molecular orbital of a molecule. As an example, we consider obtaining a (molecular) graph F=G(H) whose median eigenvalues lambda(+) and lambda(-) are predictably close to 0.
引用
收藏
页码:1526 / 1535
页数:10
相关论文
共 50 条
  • [21] Domination-Related Parameters in Rooted Product Graphs
    Dorota Kuziak
    Magdalena Lemańska
    Ismael G. Yero
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 199 - 217
  • [22] Spectra of M-edge rooted product of graphs
    R. Pavithra
    R. Rajkumar
    Indian Journal of Pure and Applied Mathematics, 2021, 52 : 1235 - 1255
  • [23] Domination-Related Parameters in Rooted Product Graphs
    Kuziak, Dorota
    Lemanska, Magdalena
    Yero, Ismael G.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (01) : 199 - 217
  • [24] Total Roman Domination Number of Rooted Product Graphs
    Cabrera Martinez, Abel
    Cabrera Garcia, Suitberto
    Carrion Garcia, Andres
    Hernandez Mira, Frank A.
    MATHEMATICS, 2020, 8 (10) : 1 - 13
  • [25] COMPUTING SOME TOPOLOGICAL INDICES OF ROOTED PRODUCT OF GRAPHS
    Azari, Mahdieh
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2017, 79 (01): : 155 - 166
  • [26] On Metric Dimensions of Symmetric Graphs Obtained by Rooted Product
    Imran, Shahid
    Siddiqui, Muhammad Kamran
    Imran, Muhammad
    Hussain, Muhammad
    MATHEMATICS, 2018, 6 (10)
  • [27] Spectra of M-edge rooted product of graphs
    Pavithra, R.
    Rajkumar, R.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (04): : 1235 - 1255
  • [28] Computing some topological indices of rooted product of graphs
    Azari, Mahdieh
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2017, 79 (01): : 155 - 166
  • [29] Eigenvalues of zero divisor graphs of principal ideal rings
    Rattanakangwanwong, Jitsupat
    Meemark, Yotsanan
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (20): : 5445 - 5459
  • [30] Prediction of close-to-zero modal dispersion over a wide range of wavelengths in singly clad multimode fibers
    Badolo, M
    Emplit, P
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 1997, 15 (01) : 121 - 124