Convergence to Consensus by General Averaging

被引:0
|
作者
Lorenz, Dirk A. [1 ]
Lorenz, Jan [2 ]
机构
[1] TU Braunschweig, Inst Anal & Algebra, D-38092 Braunschweig, Germany
[2] Swiss Fed Inst Technol, Dept Mangement Tech & Econ, Chair Syst Design, Zurich, Switzerland
来源
POSITIVE SYSTEMS, PROCEEDINGS | 2009年 / 389卷
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate sufficient conditions for a discrete nonlinear non-homogeneous dynamical system to converge to consensus. We formulate a theorem which is based on the notion of averaging maps. Further on, we give examples that demonstrate that the theory of convergence to consensus is still not complete.
引用
收藏
页码:91 / +
页数:2
相关论文
共 50 条
  • [21] On Indigenous Random Consensus and Averaging Dynamics
    Touri, Behrouz
    Langbort, Cedric
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 6208 - 6212
  • [22] Quantized Consensus and Averaging on Gossip Digraphs
    Cai, Kai
    Ishii, Hideaki
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (09) : 2087 - 2100
  • [23] Asymptotic Convergence Rates for Averaging Strategies
    Meunier, Laurent
    Legheraba, Iskander
    Chevaleyre, Yann
    Teytaud, Olivier
    PROCEEDINGS OF THE 16TH ACM/SIGEVO CONFERENCE ON FOUNDATIONS OF GENETIC ALGORITHMS (FOGA'21), 2021,
  • [24] On Conditions for Convergence to Consensus
    Lorenz, Jan
    Lorenz, Dirk A.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (07) : 1651 - 1656
  • [25] Introduction: Consensus on Convergence
    Deschamps, Bruno
    Matthews, Kent
    OPEN ECONOMIES REVIEW, 2024, 35 (04) : 695 - 699
  • [26] Velocity averaging - a general framework
    Lazar, Martin
    Mitrovic, Darko
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2012, 9 (03) : 239 - 260
  • [27] Improving consensus structure by eliminating averaging artifacts
    Dukka, B. K. C.
    BMC STRUCTURAL BIOLOGY, 2009, 9
  • [28] Controlled Hopwise Averaging and Its Convergence Rate
    Lu, Jie
    Tang, Choon Yik
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (04) : 1005 - 1012
  • [29] STRONG-CONVERGENCE IN THE STOCHASTIC AVERAGING PRINCIPLE
    HEUNIS, AJ
    KOURITZIN, MA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 187 (01) : 134 - 155
  • [30] Geometric bounds for convergence rates of averaging algorithms
    Charron-Bost, Bernadette
    INFORMATION AND COMPUTATION, 2022, 285