Closed Willmore minimal hypersurfaces with constant scalar curvature in S5(1) are isoparametric
被引:10
|
作者:
Deng, Qintao
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Sch Math & Stat, 152 Luoyu Rd, Wuhan 430079, Peoples R China
Cent China Normal Univ, Hubei Key Lab Math Sci, 152 Luoyu Rd, Wuhan 430079, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, 152 Luoyu Rd, Wuhan 430079, Peoples R China
Deng, Qintao
[1
,2
]
Gu, Huiling
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, 152 Luoyu Rd, Wuhan 430079, Peoples R China
Gu, Huiling
[3
]
Wei, Qiaoyu
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Sch Math & Stat, 152 Luoyu Rd, Wuhan 430079, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, 152 Luoyu Rd, Wuhan 430079, Peoples R China
Wei, Qiaoyu
[1
]
机构:
[1] Cent China Normal Univ, Sch Math & Stat, 152 Luoyu Rd, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Hubei Key Lab Math Sci, 152 Luoyu Rd, Wuhan 430079, Peoples R China
[3] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
In this paper, we will prove that any closed minimal Willmore hypersurface M-4 of S-5 with constant scalar curvature must be isoparametric. To be precise, M-4 is either an equatorial 4 sphere, a product of sphere S-2(root 2/2) x S-2(root 2/2) or a Cartan's minimal hypersurface. In particular, the value of the second fundamental form S can only be 0, 4, 12. This result strongly supports Chern's Conjecture. (C) 2017 Elsevier Inc. All rights reserved.