Connecting the Dots: Document-level Neural Relation Extraction with Edge-oriented Graphs

被引:0
|
作者
Christopoulou, Fenia [1 ]
Miwa, Makoto [2 ,3 ]
Ananiadou, Sophia [1 ]
机构
[1] Univ Manchester, Natl Ctr Text Min, Sch Comp Sci, Manchester, Lancs, England
[2] Toyota Technol Inst, Nagoya, Aichi 4688511, Japan
[3] Natl Inst Adv Ind Sci & Technol, Artificial Intelligence Res Ctr AIRC, Tsukuba, Ibaraki, Japan
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Document-level relation extraction is a complex human process that requires logical inference to extract relationships between named entities in text. Existing approaches use graph-based neural models with words as nodes and edges as relations between them, to encode relations across sentences. These models are node-based, i.e., they form pair representations based solely on the two target node representations. However, entity relations can be better expressed through unique edge representations formed as paths between nodes. We thus propose an edge-oriented graph neural model for document-level relation extraction. The model utilises different types of nodes and edges to create a document-level graph. An inference mechanism on the graph edges enables to learn intra- and inter-sentence relations using multi-instance learning internally. Experiments on two document-level biomedical datasets for chemical-disease and gene-disease associations show the usefulness of the proposed edge-oriented approach.
引用
收藏
页码:4925 / 4936
页数:12
相关论文
共 50 条
  • [11] Document-Level Relation Extraction with Path Reasoning
    Xu, Wang
    Chen, Kehai
    Zhao, Tiejun
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2023, 22 (04)
  • [12] TIMERS: Document-level Temporal Relation Extraction
    Mathur, Puneet
    Jain, Rajiv
    Dernoncourt, Franck
    Morariu, Vlad
    Tran, Quan Hung
    Manocha, Dinesh
    ACL-IJCNLP 2021: THE 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 2, 2021, : 524 - 533
  • [13] DEERE: Document-Level Event Extraction as Relation Extraction
    Li, Jian
    Hu, Ruijuan
    Zhang, Keliang
    Liu, Haiyan
    Ma, Yanzhou
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [14] Discriminative Reasoning for Document-level Relation Extraction
    Xu, Wang
    Chen, Kehai
    Zhao, Tiejun
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 1653 - 1663
  • [15] Anaphor Assisted Document-Level Relation Extraction
    Lu, Chonggang
    Zhang, Richong
    Sun, Kai
    Kim, Jaein
    Zhang, Cunwang
    Mao, Yongyi
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2023), 2023, : 15453 - 15464
  • [16] Document-level relation extraction with three channels
    Zhang, Zhanjun
    Zhao, Shan
    Zhang, Haoyu
    Wan, Qian
    Liu, Jie
    KNOWLEDGE-BASED SYSTEMS, 2024, 284
  • [17] Document-level Relation Extraction as Semantic Segmentation
    Zhang, Ningyu
    Chen, Xiang
    Xie, Xin
    Deng, Shumin
    Tan, Chuanqi
    Chen, Mosha
    Huang, Fei
    Si, Luo
    Chen, Huajun
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3999 - 4006
  • [18] Document-Level Relation Extraction with Local Relation and Global Inference
    Liu, Yiming
    Shan, Hongtao
    Nie, Feng
    Zhang, Gaoyu
    Yuan, George Xianzhi
    INFORMATION, 2023, 14 (07)
  • [19] Document-level relation extraction with global and path dependencies
    Jia, Wei
    Ma, Ruizhe
    Yan, Li
    Niu, Weinan
    Ma, Zongmin
    KNOWLEDGE-BASED SYSTEMS, 2024, 289
  • [20] Inter span learning for document-level relation extraction
    Liao, Tao
    Sun, Haojie
    Zhang, Shunxiang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 9965 - 9977