Connecting the Dots: Document-level Neural Relation Extraction with Edge-oriented Graphs

被引:0
|
作者
Christopoulou, Fenia [1 ]
Miwa, Makoto [2 ,3 ]
Ananiadou, Sophia [1 ]
机构
[1] Univ Manchester, Natl Ctr Text Min, Sch Comp Sci, Manchester, Lancs, England
[2] Toyota Technol Inst, Nagoya, Aichi 4688511, Japan
[3] Natl Inst Adv Ind Sci & Technol, Artificial Intelligence Res Ctr AIRC, Tsukuba, Ibaraki, Japan
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Document-level relation extraction is a complex human process that requires logical inference to extract relationships between named entities in text. Existing approaches use graph-based neural models with words as nodes and edges as relations between them, to encode relations across sentences. These models are node-based, i.e., they form pair representations based solely on the two target node representations. However, entity relations can be better expressed through unique edge representations formed as paths between nodes. We thus propose an edge-oriented graph neural model for document-level relation extraction. The model utilises different types of nodes and edges to create a document-level graph. An inference mechanism on the graph edges enables to learn intra- and inter-sentence relations using multi-instance learning internally. Experiments on two document-level biomedical datasets for chemical-disease and gene-disease associations show the usefulness of the proposed edge-oriented approach.
引用
收藏
页码:4925 / 4936
页数:12
相关论文
共 50 条
  • [1] KEoG: A knowledge-aware edge-oriented graph neural network for document-level relation extraction
    Li, Tao
    Peng, Weihua
    Chen, Qingcai
    Wang, Xiaolong
    Tang, Buzhou
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 1740 - 1747
  • [2] Document-level medical relation extraction via edge-oriented graph neural network based on document structure and external knowledge
    Li, Tao
    Xiong, Ying
    Wang, Xiaolong
    Chen, Qingcai
    Tang, Buzhou
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (SUPPL 7)
  • [3] Document-level medical relation extraction via edge-oriented graph neural network based on document structure and external knowledge
    Tao Li
    Ying Xiong
    Xiaolong Wang
    Qingcai Chen
    Buzhou Tang
    BMC Medical Informatics and Decision Making, 21
  • [4] A Neural Edge-Editing Approach for Document-Level Relation Graph Extraction
    Makino, Kohei
    Miwa, Makoto
    Sasaki, Yutaka
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 2653 - 2662
  • [5] Survey on Document-Level Relation Extraction
    Zhou Y.
    Huang H.
    Liu H.
    Hao Z.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2022, 50 (04): : 10 - 25
  • [6] Document-Level Relation Extraction with Reconstruction
    Xu, Wang
    Chen, Kehai
    Zhao, Tiejun
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 14167 - 14175
  • [7] Document-level Relation Extraction with Relation Correlations
    Han, Ridong
    Peng, Tao
    Wang, Benyou
    Liu, Lu
    Tiwari, Prayag
    Wan, Xiang
    NEURAL NETWORKS, 2024, 171 : 14 - 24
  • [8] The Dots Have Their Values: Exploiting the Node-Edge Connections in Graph-based Neural Models for Document-level Relation Extraction
    Hieu Minh Tran
    Minh Trung Nguyen
    Thien Huu Nguyen
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, 2020, : 4561 - 4567
  • [9] Multi-granularity Neural Networks for Document-Level Relation Extraction
    Chen, Xiye
    Wang, Peng
    WEB AND BIG DATA, APWEB-WAIM 2024, PT V, 2024, 14965 : 95 - 112
  • [10] Global-to-Local Neural Networks for Document-Level Relation Extraction
    Wang, Difeng
    Wei Hu
    Cao, Ermei
    Sun, Weijian
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 3711 - 3721