Electron trapping and acceleration by the plasma wakefield of a self-modulating proton beam

被引:28
|
作者
Lotov, K. V. [1 ,2 ]
Sosedkin, A. P. [1 ,2 ]
Petrenko, A. V. [1 ,3 ]
Amorim, L. D. [4 ]
Vieira, J. [4 ]
Fonseca, R. A. [4 ]
Silva, L. O. [4 ]
Gschwendtner, E. [3 ]
Muggli, P. [5 ]
机构
[1] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] CERN, CH-1211 Geneva 23, Switzerland
[4] Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, P-1049001 Lisbon, Portugal
[5] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany
基金
俄罗斯科学基金会;
关键词
FACILITY; DYNAMICS;
D O I
10.1063/1.4904365
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It is shown that co-linear injection of electrons or positrons into the wakefield of the self-modulating particle beam is possible and ensures high energy gain. The witness beam must copropagate with the tail part of the driver, since the plasma wave phase velocity there can exceed the light velocity, which is necessary for efficient acceleration. If the witness beam is many wakefield periods long, then the trapped charge is limited by beam loading effects. The initial trapping is better for positrons, but at the acceleration stage a considerable fraction of positrons is lost from the wave. For efficient trapping of electrons, the plasma boundary must be sharp, with the density transition region shorter than several centimeters. Positrons are not susceptible to the initial plasma density gradient. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Electron trapping and acceleration in plasma wake field produced by an evolving hollow electron beam
    Liu, Xiangyang
    Qu, Junfan
    Liu, Peng
    Fan, Houchen
    Cai, Ling
    Zhang, Feng
    Yu, Qin
    Li, Xiaofeng
    Zhang, Linwen
    Kong, Qing
    JOURNAL OF PLASMA PHYSICS, 2021, 87 (01)
  • [32] Trapping and acceleration of nonideal injected electron runches in laser Wakefield accelerators
    Hubbard, RR
    Gordon, DF
    Cooley, JH
    Hafizi, B
    Jones, TG
    Kaganovich, D
    Sprangle, P
    Ting, AC
    Zigler, A
    Dexter, J
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2005, 33 (02) : 712 - 722
  • [33] Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall
    Liu Mingping
    Liu Sanqiu
    He Jun
    Liu Jie
    PLASMA SCIENCE & TECHNOLOGY, 2013, 15 (09) : 841 - 844
  • [34] Electron acceleration based on self-trapping by plasma wake fields
    Suk, H
    JOURNAL OF APPLIED PHYSICS, 2002, 91 (01) : 487 - 491
  • [35] Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall
    刘明萍
    刘三秋
    何俊
    刘杰
    Plasma Science and Technology, 2013, 15 (09) : 841 - 844
  • [36] Plasma wakefield acceleration utilizing multiple electron bunches
    Kallos, E.
    Katsouleas, T.
    Muggli, P.
    Pavlishin, I.
    Pogorelsky, I.
    Stolyarov, D.
    Yakimenko, V.
    Kimura, W. D.
    2007 IEEE PARTICLE ACCELERATOR CONFERENCE, VOLS 1-11, 2007, : 2314 - +
  • [37] OPTIMUM TRAPPING CONDITION FOR LASER WAKEFIELD ACCELERATION OF ELECTRONS IN AN INHOMOGENIOUS PLASMA
    Gopal, K.
    Nam, I. H.
    Gupta, D. N.
    Suk, H.
    2015 42ND IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCES (ICOPS), 2015,
  • [38] Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall
    刘明萍
    刘三秋
    何俊
    刘杰
    Plasma Science and Technology, 2013, (09) : 841 - 844
  • [39] Witness electron beam injection using an active plasma lens for a proton beam-driven plasma wakefield accelerator
    Kim, S- Y.
    Moon, K.
    Chung, M.
    Sjobak, K. N.
    Adli, E.
    Dayyani, M.
    Doebert, S.
    Yoon, E. S.
    Nam, I.
    Hahn, G.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2021, 24 (12)
  • [40] A tunable electron beam source using trapping of electrons in a density down-ramp in laser wakefield acceleration
    Henrik Ekerfelt
    Martin Hansson
    Isabel Gallardo González
    Xavier Davoine
    Olle Lundh
    Scientific Reports, 7