Half-regular factorizations of the complete bipartite graph

被引:2
|
作者
Aksen, Mark [1 ]
Miklos, Istvan [1 ,2 ,3 ]
Zhou, Kathleen [1 ]
机构
[1] Budapest Semesters Math, Bethlen Gabor Ter 2, H-1071 Budapest, Hungary
[2] Alfred Renyi Inst, Realtanoda U 13-15, H-1053 Budapest, Hungary
[3] Inst Comp Sci & Control, Lagymanyosi Ut 11, H-1111 Budapest, Hungary
关键词
Degree sequences; Degree matrix; Graph factorization; Edge packing; Latin squares; Markov chain Monte Carlo; DISCRETE TOMOGRAPHY; MARKOV-CHAINS; X-RAYS; GENERATION; PROOF;
D O I
10.1016/j.dam.2017.06.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a bipartite version of the color degree matrix problem. A bipartite graph G(U, V, E) is half-regular if all vertices in U have the same degree. We give necessary and sufficient conditions for a bipartite degree matrix (also known as demand matrix) to be the color degree matrix of an edge-disjoint union of half-regular graphs. We also give necessary and sufficient perturbations to transform realizations of a half-regular degree matrix into each other. Based on these perturbations, a Markov chain Monte Carlo method is designed in which the inverse of the acceptance ratios is polynomial bounded. Realizations of a half-regular degree matrix are generalizations of Latin squares, and they also appear in applied neuroscience. (C) 2017 Published by Elsevier B.V.
引用
收藏
页码:21 / 33
页数:13
相关论文
共 50 条
  • [31] Quantum counting on the complete bipartite graph
    Bezerra, Gustavo A.
    Santos, Raqueline A. M.
    Portugal, Renato
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2024, 22 (06)
  • [32] CHROMATIC POLYNOMIAL OF A COMPLETE BIPARTITE GRAPH
    SWENSWEN.JR
    AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (07): : 797 - 798
  • [33] Covering a graph by complete bipartite graphs
    Erdos, P
    Pyber, L
    DISCRETE MATHEMATICS, 1997, 170 (1-3) : 249 - 251
  • [34] ON PLANAR DECOMPOSITION OF A COMPLETE BIPARTITE GRAPH
    SHIRAKAW.I
    TAKAHASH.H
    OZAKI, H
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1968, 16 (02) : 408 - &
  • [35] On paths in a complete bipartite geometric graph
    Kaneko, A
    Kano, M
    DISCRETE AND COMPUTATIONAL GEOMETRY, 2001, 2098 : 187 - 191
  • [36] Complete bipartite graph is a totally irregular total graph
    Tilukay, Meilin, I
    Taihuttu, Pranaya D. M.
    Salman, A. N. M.
    Rumlawang, Francis Y.
    Leleury, Zeth A.
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2021, 9 (02) : 387 - 395
  • [37] On Vertex-Disjoint Complete Bipartite Subgraphs in a Bipartite Graph
    Hong Wang
    Graphs and Combinatorics, 1999, 15 : 353 - 364
  • [38] The Bipartite-Cylindrical Crossing Number of the Complete Bipartite Graph
    Bernardo Ábrego
    Silvia Fernández-Merchant
    Athena Sparks
    Graphs and Combinatorics, 2020, 36 : 205 - 220
  • [39] The Bipartite-Cylindrical Crossing Number of the Complete Bipartite Graph
    Abrego, Bernardo
    Fernandez-Merchant, Silvia
    Sparks, Athena
    GRAPHS AND COMBINATORICS, 2020, 36 (02) : 205 - 220
  • [40] Partitioning the vertex set of a bipartite graph into complete bipartite subgraphs
    Duginov, Oleg
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2014, 16 (03): : 203 - 214