A homogenization method for analysis of heterogeneous cosserat materials

被引:4
|
作者
Yuan, X [1 ]
Tomita, Y
机构
[1] Kobe Univ, Grad Sch Sci & Technol, Kobe, Hyogo 6578501, Japan
[2] Kobe Univ, Fac Engn, Kobe, Hyogo 6578501, Japan
来源
关键词
homogenization method; micropolar material; size effect;
D O I
10.4028/www.scientific.net/KEM.177-180.53
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In order to predict the deformation behaviors that depend upon the scale of the microstructure of the material, we developed an asymptotic homogenization method involving a scale parameter for heterogeneous Cosserat materials. The method is then applied to the analysis of the problem of a body with internal voids and the clarification of the effect of the relative void size and material parameters on the mechanical response of the materials.
引用
收藏
页码:53 / 58
页数:6
相关论文
共 50 条
  • [31] HOMOGENIZATION OF HETEROGENEOUS, FIBRE STRUCTURED MATERIALS
    Fillep, S.
    Mergheim, J.
    Steinmann, P.
    COMPUTATIONAL PLASTICITY XII: FUNDAMENTALS AND APPLICATIONS, 2013, : 832 - 842
  • [32] Plastic flow localization analysis of heterogeneous materials using homogenization-based finite element method
    Tadano, Yuichi
    Yoshida, Kengo
    Kuroda, Mitsutoshi
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2013, 72 : 63 - 74
  • [33] A posteriori error analysis of the heterogeneous multiscale method for homogenization problems
    Abdulle, Assyr
    Nonnenmacher, Achim
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (17-18) : 1081 - 1086
  • [34] A homogenization-based quasi-discrete method for the fracture of heterogeneous materials
    Berke, P. Z.
    Peerlings, R. H. J.
    Massart, T. J.
    Geers, M. G. D.
    COMPUTATIONAL MECHANICS, 2014, 53 (05) : 909 - 923
  • [35] A simple computational homogenization method for structures made of linear heterogeneous viscoelastic materials
    Tran, A. B.
    Yvonnet, J.
    He, Q-C.
    Toulemonde, C.
    Sanahuja, J.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (45-46) : 2956 - 2970
  • [36] A homogenization-based quasi-discrete method for the fracture of heterogeneous materials
    P. Z. Berke
    R. H. J. Peerlings
    T. J. Massart
    M. G. D. Geers
    Computational Mechanics, 2014, 53 : 909 - 923
  • [37] Homogenization method for dynamic viscoelastic analysis of composite materials
    Koishi, M
    Shiratori, M
    Miyoshi, T
    Kabe, K
    JSME INTERNATIONAL JOURNAL SERIES A-SOLID MECHANICS AND MATERIAL ENGINEERING, 1997, 40 (03): : 306 - 312
  • [38] A micromorphic computational homogenization framework for heterogeneous materials
    Biswas, R.
    Poh, L. H.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2017, 102 : 187 - 208
  • [39] An iterative analytical model for heterogeneous materials homogenization
    Batache, D.
    Kanit, T.
    Kaddouri, W.
    Bensaada, R.
    Imad, A.
    Outtas, T.
    COMPOSITES PART B-ENGINEERING, 2018, 142 : 56 - 67
  • [40] Variational asymptotic homogenization of heterogeneous electromagnetoelastic materials
    Tang, Tian
    Yu, Wenbin
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2008, 46 (08) : 741 - 757