Learning quantum Hamiltonians from single-qubit measurements

被引:20
|
作者
Che, Liangyu [1 ,2 ,3 ]
Wei, Chao [1 ,2 ,3 ]
Huang, Yulei [1 ,2 ,3 ]
Zhao, Dafa [4 ,5 ]
Xue, Shunzhong [4 ,5 ]
Nie, Xinfang [1 ,2 ,3 ]
Li, Jun [1 ,2 ,3 ]
Lu, Dawei [1 ,2 ,3 ]
Xin, Tao [1 ,2 ,3 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol, Guangdong Prov Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[4] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[5] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 02期
基金
中国国家自然科学基金;
关键词
PHASE-TRANSITIONS;
D O I
10.1103/PhysRevResearch.3.023246
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the Hamiltonian-based quantum dynamics, to estimate Hamiltonians from the measured data is a vital topic. In this work, we propose a recurrent neural network to learn the target Hamiltonians from the temporal records of single-qubit measurements, which does not require the ground states and only measures single-qubit observables. It is applicable on both time-independent and time-dependent Hamiltonians and can simultaneously capture the magnitude and sign of Hamiltonian parameters. Taking the Hamiltonians with the nearest-neighbor interactions as numerical examples, we trained our recurrent neural networks to learn different types of Hamiltonians with high accuracy. The study also shows that our method has good robustness against the measurement noise and decoherence effect. Therefore, it has widespread applications in estimating the parameters of quantum devices and characterizing the Hamiltonian-based quantum dynamics.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Resource-Optimal Single-Qubit Quantum Circuits
    Bocharov, Alex
    Svore, Krysta M.
    PHYSICAL REVIEW LETTERS, 2012, 109 (19)
  • [32] Single-qubit gate teleportation provides a quantum advantage
    Caha, Libor
    Coiteux-Roy, Xavier
    Koenig, Robert
    QUANTUM, 2024, 8
  • [33] Arbitrary single-qubit transformations on a quantum frequency processor
    Lu, Hsuan-Hao
    Simmerman, Emma M.
    Lougovski, Pavel
    Weiner, Andrew M.
    Lukens, Joseph M.
    2020 IEEE PHOTONICS CONFERENCE (IPC), 2020,
  • [34] Quantum signal transmission through a single-qubit chain
    Y. S. Greenberg
    C. Merrigan
    A. Tayebi
    V. Zelevinsky
    The European Physical Journal B, 2013, 86
  • [35] Universal single-qubit quantum controller-observers
    Lloyd, S
    Landahl, AJ
    Slotine, JJE
    2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 829 - 833
  • [36] Experimental replication of single-qubit quantum phase gates
    Micuda, M.
    Starek, R.
    Straka, I.
    Mikova, M.
    Sedlak, M.
    Jezek, M.
    Fiurasek, J.
    PHYSICAL REVIEW A, 2016, 93 (05)
  • [37] Single-qubit thermometry
    Jevtic, Sania
    Newman, David
    Rudolph, Terry
    Stace, T. M.
    PHYSICAL REVIEW A, 2015, 91 (01):
  • [38] Single-Qubit Gates Matter for Optimising Quantum Circuit Depth in Qubit Mapping
    Li, Sanjiang
    Ky Dan Nguyen
    Clare, Zachary
    Feng, Yuan
    2023 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN, ICCAD, 2023,
  • [39] Signatures of Open and Noisy Quantum Systems in Single-Qubit Quantum Annealing
    Morrell, Zachary
    Vuffray, Marc
    Lokhov, Andrey Y.
    Bartschi, Andreas
    Albash, Tameem
    Coffrin, Carleton
    PHYSICAL REVIEW APPLIED, 2023, 19 (03)
  • [40] Quantum Simulation of Single-Qubit Thermometry Using Linear Optics
    Mancino, Luca
    Sbroscia, Marco
    Gianani, Ilaria
    Roccia, Emanuele
    Barbieri, Marco
    PHYSICAL REVIEW LETTERS, 2017, 118 (13)