Deterministic Parameter Change Models in Continuous and Discrete Time

被引:3
|
作者
Chambers, Marcus J. [1 ]
Taylor, A. M. Robert [2 ]
机构
[1] Univ Essex, Dept Econ, Colchester, Essex, England
[2] Univ Essex, Essex Business Sch, Wivenhoe Pk, Colchester CO4 3SQ, Essex, England
基金
英国经济与社会研究理事会;
关键词
Parameter change; continuous and discrete time; autoregression; trend break; unit root; persistence change; explosive bubbles; UNIT-ROOT TESTS; OIL-PRICE SHOCK; POSSIBLE BREAK; TREND FUNCTION; GREAT CRASH; BUBBLES; EXUBERANCE;
D O I
10.1111/jtsa.12456
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a model of deterministic one-time parameter change in a continuous time autoregressive model around a deterministic trend function. The exact discrete time analogue model is detailed and compared to corresponding parameter change models adopted in the discrete time literature. The relationships between the parameters in the continuous time model and the discrete time analogue model are also explored. Our results show that the discrete time models used in the literature can be justified by the corresponding continuous time model, with a only a minor modification needed for the (most likely) case where the changepoint does not coincide with one of the discrete time observation points. The implications of our results for a number of extant discrete time models and testing procedures are discussed.
引用
收藏
页码:134 / 145
页数:12
相关论文
共 50 条
  • [1] Parameter Estimation of Change Point Models based on the Discrete and Continuous Sampler
    Xu, Xiaopeng
    Liu, Chuancai
    Zhang, Xiaochun
    2021 21ST INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY COMPANION (QRS-C 2021), 2021, : 210 - 215
  • [2] IDENTIFYING RESTRICTIONS FOR FINITE PARAMETER CONTINUOUS TIME MODELS WITH DISCRETE TIME DATA
    Blevins, Jason R.
    ECONOMETRIC THEORY, 2017, 33 (03) : 739 - 754
  • [3] Representation of continuous change with discrete time
    Barber, F
    Moreno, S
    FOURTH INTERNATIONAL WORKSHOP ON TEMPORAL REPRESENTATION AND REASONING, PROCEEDINGS, 1997, : 175 - 179
  • [4] Parameter Estimation of Discrete and Continuous-Time Physical Models: A Similarity Transformation Approach
    Ramos, J. A.
    Lopes dos Santos, P.
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 4435 - 4440
  • [5] On the discrete time and continuous states models
    Takahashi, H
    HITOTSUBASHI JOURNAL OF ECONOMICS, 1997, 38 (02) : 125 - 137
  • [6] CONTINUOUS DYNAMIC PROGRAMMING WITH DISCRETE TIME-PARAMETER
    SCHAL, M
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1972, 21 (04): : 279 - &
  • [7] Efficient parameter estimation for models of healthcare-associated pathogen transmission in discrete and continuous time
    Thomas, Alun
    Redd, Andrew
    Khader, Karim
    Leecaster, Molly
    Greene, Tom
    Samore, Matthew
    MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2015, 32 (01): : 79 - 98
  • [8] Least squares parameter estimation of continuous-time ARX models from discrete-time data
    Soderstrom, T
    Fan, H
    Carlsson, B
    Bigi, S
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (05) : 659 - 673
  • [9] CONVERSION OF CONTINUOUS TIME MODELS TO DISCRETE-TIME MODELS.
    Edgar, Thomas F.
    AIChEMI Modular Instruction, Series A: Process Control, 1982, 3 : 39 - 49
  • [10] Comparison of deterministic and stochastic SIS and SIR models in discrete time
    Allen, LJS
    Burgin, AM
    MATHEMATICAL BIOSCIENCES, 2000, 163 (01) : 1 - 33