Comparison Study of Collaborative Learning Techniques on Residential Short-Term Load Forecasting

被引:0
|
作者
He, Yu [1 ]
Luo, Fengji [1 ]
Ranzi, Gianluca [1 ]
机构
[1] Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
Load forecasting; demand-side management; meta-learning; federated learning; artificial neural networks;
D O I
10.1109/iSPEC54162.2022.10032987
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The deployment of the advanced metering infrastructure provides the opportunity for performing ShortTerm Load Forecasting (STLF) for a single energy user. In the last few decades, Artificial neural networks (ANNs) have been widely implemented in STLF. Conventionally, a user trains an ANN only based on her/ his own historical load data. In recent years, collaborative learning techniques have been applied to facilitate multiple users to train the ANNs to enhance the STLF performance that can hardly be achieved by the users individually. This paper presents a comparison study evaluating the performances of three state- of-the-art collaborative learning STLF methods on an Australian "Smart Grid, Smart City" residential power load dataset. The work is expected to reference researchers and engineers the practical implementation of STLF systems in the residential sector.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] An Short-Term Residential Load Forecasting Scheme Using Multi-Task Learning
    Wang Y.-F.
    Xiao C.-B.
    Chen Y.
    Jin Q.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2021, 44 (03): : 47 - 52
  • [22] Federated learning for interpretable short-term residential load forecasting in edge computing network
    Xu, Chongchong
    Chen, Guo
    Li, Chaojie
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (11): : 8561 - 8574
  • [23] Towards a peer-to-peer residential short-term load forecasting with federated learning
    Fernandez, Joaquin Delgado
    Menci, Sergio Potenciano
    Pavic, Ivan
    2023 IEEE BELGRADE POWERTECH, 2023,
  • [24] Hierarchical Multiobjective Distributed Deep Learning for Residential Short-Term Electric Load Forecasting
    Sakuma, Yuiko
    Nishi, Hiroaki
    IEEE ACCESS, 2022, 10 : 69950 - 69962
  • [25] Federated learning for interpretable short-term residential load forecasting in edge computing network
    Chongchong Xu
    Guo Chen
    Chaojie Li
    Neural Computing and Applications, 2023, 35 : 8561 - 8574
  • [26] Comparative Analysis of Short-Term Load Forecasting Using Machine Learning Techniques
    Shifare, Hagos L.
    Doshi, Ronak
    Ved, Amit
    ADVANCED NETWORK TECHNOLOGIES AND INTELLIGENT COMPUTING, ANTIC 2023, PT III, 2024, 2092 : 117 - 133
  • [27] Research in residential electricity characteristics and short-term load forecasting
    Feng, H. (fenghaixiashiwo@163.com), 1600, Universitas Ahmad Dahlan, Jalan Kapas 9, Semaki, Umbul Harjo,, Yogiakarta, 55165, Indonesia (11):
  • [28] A dynamic ensemble method for residential short-term load forecasting
    Yu Yang
    Fan Jinfu
    Wang Zhongjie
    Zhu Zheng
    Xu Yukun
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 63 : 75 - 88
  • [29] Short-term load forecasting techniques using ANN
    Xu, LY
    Chen, WJ
    PROCEEDINGS OF THE 2001 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS (CCA'01), 2001, : 157 - 160
  • [30] Short-term load forecasting in non-residential Buildings
    Penya, Yoseba K.
    Borges, Cruz E.
    Fernandez, Ivan
    IEEE AFRICON 2011, 2011,