(p,h)-Convex Functions Associated with Hadamard and Fejer-Hadamard Inequalities via k-Fractional Integral Operators

被引:0
|
作者
Zhang, Xiujun [1 ]
Farid, Ghulam [2 ]
Demirel, Ayse Kuebra [3 ]
Jung, Chahn Yong [4 ]
机构
[1] Chengdu Univ, Sch Comp Sci, Chengdu, Peoples R China
[2] COMSATS Univ Islamabad, Attock Campus, Attock Campus, Islamabad, Pakistan
[3] Ordu Univ, Ordu, Turkey
[4] Gyeongsang Natl Univ, Dept Business Adm, Jinju 52828, South Korea
关键词
BOUNDS;
D O I
10.1155/2022/3832330
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, generalized versions of the k-fractional Hadamard and Fejer-Hadamard inequalities are constructed. To obtain the generalized versions of these inequalities, k-fractional integral operators including the well-known Mittag-Leffler function are utilized. The class of (p,h)-convex functions for Hadamard-type inequalities give the generalizations of results which have been proved in literature for p-convex, h-convex, and several functions deducible from these two classes.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Hadamard and Fejer type inequalities for p-convex functions via Caputo fractional derivatives
    Mehreen, Naila
    Anwar, Matloob
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 253 - 266
  • [32] Generalized Inequalities of the type of Hermite-Hadamard-Fejer with Quasi-Convex Functions by way of k-Fractional Derivatives
    Ali, A.
    Gulshan, G.
    Hussain, R.
    Latif, A.
    Muddassar, M.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (07) : 1208 - 1219
  • [33] New Hermite-Hadamard-Fejer Inequalities via k-Fractional Integrals for Differentiable Generalized Nonconvex Functions
    Kashuri, Artion
    Rassias, Themistocles M.
    FILOMAT, 2020, 34 (08) : 2549 - 2558
  • [34] STUDY ON FRACTIONAL FEJER-HADAMARD TYPE INEQUALITIES ASSOCIATED WITH GENERALIZED EXPONENTIALLY CONVEXITY
    Farid, Ghulam
    Guran, Liliana
    Qiang, Xiaoli
    Yu-Ming Chu
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2021, 83 (04): : 159 - 170
  • [35] ON SOME HERMITE-HADAMARD-FEJER INEQUALITIES FOR (k, h)-CONVEX FUNCTIONS
    Micherda, Bartosz
    Rajba, Teresa
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (04): : 931 - 940
  • [36] On some Hermite–Hadamard inequalities involving k-fractional operators
    Shanhe Wu
    Sajid Iqbal
    Muhammad Aamir
    Muhammad Samraiz
    Awais Younus
    Journal of Inequalities and Applications, 2021
  • [37] Hermite-Hadamard-Fejer Type Inequalities for p-Convex Functions via Fractional Integrals
    Kunt, Mehmet
    Iscan, Imdat
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A4): : 2079 - 2089
  • [38] Conformable integral version of Hermite-Hadamard-Fejer inequalities via η-convex functions
    Khurshid, Yousaf
    Khan, Muhammad Adil
    Chu, Yu-Ming
    AIMS MATHEMATICS, 2020, 5 (05): : 5106 - 5120
  • [39] Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals
    Iscan, Imdat
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2015, 60 (03): : 355 - 366
  • [40] Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for p-convex functions via conformable fractional integrals
    Mehreen, Naila
    Anwar, Matloob
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)