Study on Diversified Carbide Precipitation in High-Strength Low-Alloy Steel during Tempering

被引:11
|
作者
Zhao, Wei [1 ]
Zhou, Hongwei [2 ]
Fang, Liangwei [2 ]
Bai, Fengmei [1 ]
Yi, Hailong [3 ]
Ali, Naqash [1 ]
Zhang, Liqiang [1 ]
Zhen, Guangwen [1 ]
机构
[1] Anhui Univ Technol, Sch Met Engn, Maxiang Rd,Xiushan Campus, Maanshan 243002, Peoples R China
[2] Anhui Univ Technol, Sch Mat Sci & Engn, Minist Educ, Key Lab Green Fabricat & Surface Technol Adv Met, Maxiang Rd,Xiushan Campus, Maanshan 243002, Peoples R China
[3] Northeastern Univ, State Key Lab Rolling & Automat, 11 Wenhua Rd, Shenyang 110189, Peoples R China
基金
中国国家自然科学基金;
关键词
carbide; energy-dispersive X-ray spectroscopy mapping; high-strength low-alloy steels; quenching and tempering; scanning transmission electron microscopy;
D O I
10.1002/srin.202000723
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Herein, the precipitation and mechanical properties of high-strength low-alloy steel (Q960E) under different tempering temperatures from 560 to 640 degrees C are investigated. Diversified precipitations (including MC, M3C, M23C6, and M7C3) are formed during tempering. The size of the M3C, M23C6, and M7C3 precipitates increases, as the temperature increases, and the precipitates are gradually spheroidized with an average size of less than 100 nm. MC-type precipitates (where M = Nb and Ti) are produced at different tempering temperatures. When tempered at 600 degrees C, Q960E steel exhibits excellent mechanical properties, including a high strength and elongation with a good impact performance. At 600 degrees C, a large number of fine MC carbides with an average size of less than 25 nm are formed. MC and matrix exhibit the Baker-Nutting orientation relationship. Edge dislocations exist in the transition region between the MC nanophase and the matrix. These dislocations reduce the mismatch degree between the MC nanophase and the matrix and promote MC nucleation. Meanwhile, the steel retains many low-angle grain boundaries when tempered at 600 degrees C, which is beneficial to its high strength.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] GRAIN REFINEMENT OF HIGH-STRENGTH LOW-ALLOY STEEL.
    Zhang, Liangyun
    Zhang, Zhenhong
    Jin, Yuzhou
    Lu, Xingwu
    Kang T'ieh/Iron and Steel (Peking), 1987, 22 (01): : 40 - 43
  • [22] FATIGUE CRACK NUCLEATION IN A HIGH-STRENGTH LOW-ALLOY STEEL
    BOETTNER, RC
    TRANSACTIONS OF THE METALLURGICAL SOCIETY OF AIME, 1967, 239 (07): : 1030 - &
  • [23] HOT DIP GALVANIZING OF HIGH-STRENGTH LOW-ALLOY STEEL
    PRIOR, DC
    TONINI, DE
    METAL FINISHING, 1984, 82 (05) : 15 - 19
  • [24] WELDABILITY OF A NEW HIGH-STRENGTH LOW-ALLOY CAST STEEL
    KENYON, N
    MINARD, LD
    WELDING JOURNAL, 1976, 55 (01) : S28 - S31
  • [25] WELDABILITY OF NIOBIUM CONTAINING HIGH-STRENGTH LOW-ALLOY STEEL
    GRAY, JM
    WELDING RESEARCH COUNCIL BULLETIN, 1976, (213): : 1 - 19
  • [27] CALCULATION OF WELDING CONDITIONS FOR HIGH-STRENGTH LOW-ALLOY STEEL
    KASATKIN, OG
    MUSIYACHENKO, VF
    AUTOMATIC WELDING USSR, 1977, 30 (10): : 1 - 4
  • [28] CAVITATION DAMAGES MORPHOLOGY OF HIGH-STRENGTH LOW-ALLOY STEEL
    Aleksic, V.
    Dojcinovic, M.
    Milovic, Lj.
    Samardzic, I.
    METALURGIJA, 2016, 55 (03): : 423 - 425
  • [29] DEVELOPMENT OF ELECTRODES FOR WELDING HIGH-STRENGTH LOW-ALLOY STEEL
    TARLINSK.VD
    WELDING PRODUCTION, 1972, 19 (10): : 55 - 58
  • [30] Ballistic performance of high-strength low-alloy steel weldments
    Reddy, GM
    Mohandas, T
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 1996, 57 (1-2) : 23 - 30