Study on Diversified Carbide Precipitation in High-Strength Low-Alloy Steel during Tempering

被引:11
|
作者
Zhao, Wei [1 ]
Zhou, Hongwei [2 ]
Fang, Liangwei [2 ]
Bai, Fengmei [1 ]
Yi, Hailong [3 ]
Ali, Naqash [1 ]
Zhang, Liqiang [1 ]
Zhen, Guangwen [1 ]
机构
[1] Anhui Univ Technol, Sch Met Engn, Maxiang Rd,Xiushan Campus, Maanshan 243002, Peoples R China
[2] Anhui Univ Technol, Sch Mat Sci & Engn, Minist Educ, Key Lab Green Fabricat & Surface Technol Adv Met, Maxiang Rd,Xiushan Campus, Maanshan 243002, Peoples R China
[3] Northeastern Univ, State Key Lab Rolling & Automat, 11 Wenhua Rd, Shenyang 110189, Peoples R China
基金
中国国家自然科学基金;
关键词
carbide; energy-dispersive X-ray spectroscopy mapping; high-strength low-alloy steels; quenching and tempering; scanning transmission electron microscopy;
D O I
10.1002/srin.202000723
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Herein, the precipitation and mechanical properties of high-strength low-alloy steel (Q960E) under different tempering temperatures from 560 to 640 degrees C are investigated. Diversified precipitations (including MC, M3C, M23C6, and M7C3) are formed during tempering. The size of the M3C, M23C6, and M7C3 precipitates increases, as the temperature increases, and the precipitates are gradually spheroidized with an average size of less than 100 nm. MC-type precipitates (where M = Nb and Ti) are produced at different tempering temperatures. When tempered at 600 degrees C, Q960E steel exhibits excellent mechanical properties, including a high strength and elongation with a good impact performance. At 600 degrees C, a large number of fine MC carbides with an average size of less than 25 nm are formed. MC and matrix exhibit the Baker-Nutting orientation relationship. Edge dislocations exist in the transition region between the MC nanophase and the matrix. These dislocations reduce the mismatch degree between the MC nanophase and the matrix and promote MC nucleation. Meanwhile, the steel retains many low-angle grain boundaries when tempered at 600 degrees C, which is beneficial to its high strength.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Tempering Behavior of Novel Low-Alloy High-Strength Steel
    Dudko, Valeriy
    Yuzbekova, Diana
    Gaidar, Sergey
    Vetrova, Sofia
    Kaibyshev, Rustam
    METALS, 2022, 12 (12)
  • [2] Delamination Fracture Related to Tempering in a High-Strength Low-Alloy Steel
    Wei Yan
    Wei Sha
    Lin Zhu
    Wei Wang
    Yi-Yin Shan
    Ke Yang
    Metallurgical and Materials Transactions A, 2010, 41 : 159 - 171
  • [3] Delamination Fracture Related to Tempering in a High-Strength Low-Alloy Steel
    Yan, Wei
    Sha, Wei
    Zhu, Lin
    Wang, Wei
    Shan, Yi-Yin
    Yang, Ke
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2010, 41A (01): : 159 - 171
  • [4] Effect of Tempering on Mechanical Properties and Microstructure of a High-Strength Low-Alloy Steel
    Z. Janjušević
    Z. Gulišija
    M. Mihailović
    A. Patarić
    Metal Science and Heat Treatment, 2014, 56 : 81 - 83
  • [5] Change of tensile behavior of a high-strength low-alloy steel with tempering temperature
    Yan, Wei
    Zhu, Lin
    Sha, Wei
    Shan, Yi-yin
    Yang, Ke
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 517 (1-2): : 369 - 374
  • [6] Effect of Tempering on Mechanical Properties and Microstructure of a High-Strength Low-Alloy Steel
    Janjusevic, Z.
    Gulisija, Z.
    Mihailovic, M.
    Pataric, A.
    METAL SCIENCE AND HEAT TREATMENT, 2014, 56 (1-2) : 81 - 83
  • [7] COARSENING KINETICS OF VANADIUM CARBIDE IN A HIGH-STRENGTH, LOW-ALLOY STEEL
    RAMAKRISHNA, D
    GUPTA, SP
    MATERIALS SCIENCE AND ENGINEERING, 1987, 92 : 179 - 191
  • [8] Quantification and Analysis of Niobium Carbide Precipitation in Cold-Rolled High-Strength Low-Alloy Steel during Annealing Process
    An, Jeong Hun
    Lee, Changgeun
    Shin, Sang Hun
    Son, Ji Hee
    Na, Kwang Su
    STEEL RESEARCH INTERNATIONAL, 2024, 95 (01)
  • [9] HIGH-STRENGTH, LOW-ALLOY STEEL CASTINGS
    MISKA, KH
    MATERIALS ENGINEERING, 1985, 101 (01): : 37 - 40
  • [10] PRECIPITATION IN MICROALLOYED HIGH-STRENGTH LOW-ALLOY STEELS
    DAVENPORT, AT
    BROSSARD, LC
    MINER, RE
    JOM-JOURNAL OF METALS, 1975, 27 (06): : 21 - 27