Active hydrodynamics of synchronization and ordering in moving oscillators

被引:12
|
作者
Banerjee, Tirthankar [1 ]
Basu, Abhik [1 ]
机构
[1] Saha Inst Nucl Phys, Condensed Matter Phys Div, Kolkata 700064, W Bengal, India
关键词
MOVEMENT PROMOTES SYNCHRONIZATION; CELL-MOVEMENT; NETWORKS; DYNAMICS; FLOW;
D O I
10.1103/PhysRevE.96.022201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The nature of emergent collective behaviors of moving interacting physical agents is a long-standing open issue in physical and biological systems alike. This calls for studies on the control of synchronization and the degree of order in a collection of diffusively moving noisy oscillators. We address this by constructing a generic hydrodynamic theory for active phase fluctuations in a collection of a large number of nearly-phase-coherent moving oscillators in two dimensions. Our theory describes the general situation where phase fluctuations and oscillator mobility mutually affect each other. We show that the interplay between the active effects and the mobility of the oscillators leads to a variety of phenomena, ranging from synchronization with long-range, nearly-long-range, and quasi-long-range orders to instabilities and desynchronization with short-range order of the oscillator phases. We highlight the complex dependences of synchronization on the active effects. These should be testable in wide-ranging systems, e.g., oscillating chemical reactions in the presence of different reaction inhibitors and facilitators, live oriented cytoskeletal extracts, and vertebrate segmentation clocks.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Synchronization of oscillators in complex networks
    Louis M. Pecora
    Pramana, 2008, 70 : 1175 - 1198
  • [42] Generalized synchronization of chaotic oscillators
    A. A. Koronovskiĭ
    O. I. Moskalenko
    A. E. Hramov
    Technical Physics Letters, 2006, 32 : 113 - 116
  • [43] Hydrodynamic synchronization of flagellar oscillators
    Benjamin Friedrich
    The European Physical Journal Special Topics, 2016, 225 : 2353 - 2368
  • [44] Synchronization of oscillators in complex networks
    Pecora, Louis M.
    PRAMANA-JOURNAL OF PHYSICS, 2008, 70 (06): : 1175 - 1198
  • [45] Generalized synchronization of chaotic oscillators
    Koronovskii, A. A.
    Moskalenko, O. I.
    Hramov, A. E.
    TECHNICAL PHYSICS LETTERS, 2006, 32 (02) : 113 - 116
  • [46] SYNCHRONIZATION ANALYSIS OF KURAMOTO OSCILLATORS
    Dong, Jiu-Gang
    Xue, Xiaoping
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2013, 11 (02) : 465 - 480
  • [47] Complete synchronization of Kuramoto oscillators
    Lunze, Jan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (42)
  • [48] Synchronization of Coupled Oscillators is a Game
    Yin, Huibing
    Mehta, Prashant G.
    Meyn, Sean P.
    Shanbhag, Uday V.
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 1783 - 1790
  • [49] MUTUAL SYNCHRONIZATION OF FM OSCILLATORS
    BOLOZNEV, VV
    MARDANOV, RF
    POLSKIY, YY
    RADIO ENGINEERING AND ELECTRONIC PHYSICS-USSR, 1971, 16 (06): : 965 - &
  • [50] Phase synchronization of chaotic oscillators
    Phys Rev Lett, 11 (1804):