QUANTIZATIONS OF POISSON LIE GROUPS AS NONCOMMUTATIVE MANIFOLDS

被引:0
|
作者
Neshveyev, Sergey [1 ]
Tuset, Lars [2 ]
机构
[1] Univ Oslo, Dept Math, POB 1053 Blindern, NO-0316 Oslo, Norway
[2] Oslo Univ Coll, Fac Engn, NO-0130 Oslo, Norway
关键词
D O I
10.1142/9789814304634_0042
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
On any q-deformation of a simply connected simple compact Poisson Lie group we construct; an equivariant spectral triple which is an isospectral deformation of that defined by the Dirac operator on the original group. Our quantum Dirac operator is defined using a Drinfeld twist which relates the q-deformed compact quantum group to the original group, and thus a priori depends on the choice of the twist, but it turns out that the spectral triple is nevertheless unique up to unitary equivalence.
引用
收藏
页码:504 / +
页数:2
相关论文
共 50 条
  • [31] Poisson Lie groups and the Miura transformation
    FigueroaOFarrill, JM
    Stanciu, S
    MODERN PHYSICS LETTERS A, 1995, 10 (36) : 2767 - 2773
  • [32] Poisson-Lie diffeomorphism groups
    Stoyanov, OS
    LETTERS IN MATHEMATICAL PHYSICS, 2001, 57 (03) : 185 - 223
  • [33] Poisson structures on double Lie groups
    Alekseevsky, D
    Grabowski, J
    Marmo, G
    Michor, PW
    JOURNAL OF GEOMETRY AND PHYSICS, 1998, 26 (3-4) : 340 - 379
  • [34] A Poisson formula for solvable Lie groups
    Jaworski, W
    JOURNAL D ANALYSE MATHEMATIQUE, 1996, 68 : 183 - 208
  • [35] On the Poisson relation for compact Lie groups
    Sutton, Craig
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2020, 57 (04) : 537 - 589
  • [36] ON RIEMANN-POISSON LIE GROUPS
    Alioune, Brahim
    Boucetta, Mohamed
    Lessiad, Ahmed Sid'Ahmed
    ARCHIVUM MATHEMATICUM, 2020, 56 (04): : 225 - 247
  • [37] POISSON INTEGRALS ON SEMISIMPLE LIE GROUPS
    MILETTA, P
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1975, 10 (MAY): : 198 - 200
  • [38] Poisson Lie groups in infinite dimensions
    Grabowski, J
    ANALYSIS ON INFINITE-DIMENSIONAL LIE GROUPS AND ALGEBRAS, 1998, : 94 - 103
  • [39] On the Poisson relation for compact Lie groups
    Craig Sutton
    Annals of Global Analysis and Geometry, 2020, 57 : 537 - 589
  • [40] ACTION OF GENERALIZED LIE GROUPS ON MANIFOLDS
    Farhangdoost, M. R.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2011, 80 (02): : 221 - 227