The circle method and diagonal cubic forms

被引:30
|
作者
Heath-Brown, DR [1 ]
机构
[1] Univ Oxford Magdalen Coll, Oxford OX1 4AU, England
关键词
cubic surface; Hasse-Weil L-function; rational lines; Hardy-Littlewood method; rational points; sum of cubes;
D O I
10.1098/rsta.1998.0181
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We use the Hardy-Littlewood circle method, in the form developed by Heath-Brown in 1996, to investigate the number of integer zeros of diagonal cubic forms. The results are subject to unproved hypotheses concerning certain Hasse-Weil L-functions. For six variables we show that there are O(P3+epsilon) zeros up to height P, for any epsilon > 0. For four variables we show that there are O(P3/2+epsilon) such zeros, excluding any that lie on rational lines in the corresponding surface.
引用
收藏
页码:673 / 699
页数:27
相关论文
共 50 条