cubic surface;
Hasse-Weil L-function;
rational lines;
Hardy-Littlewood method;
rational points;
sum of cubes;
D O I:
10.1098/rsta.1998.0181
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
We use the Hardy-Littlewood circle method, in the form developed by Heath-Brown in 1996, to investigate the number of integer zeros of diagonal cubic forms. The results are subject to unproved hypotheses concerning certain Hasse-Weil L-functions. For six variables we show that there are O(P3+epsilon) zeros up to height P, for any epsilon > 0. For four variables we show that there are O(P3/2+epsilon) such zeros, excluding any that lie on rational lines in the corresponding surface.
机构:
Princeton Univ, Dept Math, Fine Hall,304 Washington Rd, Princeton, NJ 08540 USA
NYU, Courant Inst, New York, NY USA
IST Austria, Klosterneuburg, AustriaPrinceton Univ, Dept Math, Fine Hall,304 Washington Rd, Princeton, NJ 08540 USA