Laser beam imaging technique for atmospheric detection

被引:0
|
作者
Tao, Z. M. [1 ]
Ma, X. M. [1 ,2 ,3 ,4 ]
Shan, H. H. [1 ]
Zhang, H. [1 ]
Han, J. J. [1 ]
Wang, S. H. [1 ]
Liu, D. [2 ,3 ]
Wang, Z. Z. [2 ,3 ]
Wang, Y. J. [2 ,3 ]
机构
[1] Army Acad Artillery & Air Def, Dept Basic Sci, Hefei 230031, Anhui, Peoples R China
[2] Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Key Lab Atmospher Opt, Hefei 230031, Anhui, Peoples R China
[3] Anhui Lab Adv Laser Technol, Hefei 230037, Anhui, Peoples R China
[4] Univ Sci & Technol China, Grad Sch, Sci Isl Branch, Hefei 230026, Anhui, Peoples R China
来源
SEVENTH SYMPOSIUM ON NOVEL PHOTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATIONS | 2021年 / 11763卷
基金
中国国家自然科学基金;
关键词
atmospheric optics; laser beam imaging; charge coupled device; aerosol; SIDE-SCATTERING; PHASE FUNCTION; BACKSCATTERING;
D O I
10.1117/12.2587402
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Atmospheric detection is the basis of air pollution control, lidar is a powerful tool for atmospheric detection. Because of blind area and transition area, lidar cannot get complete echo signals in the near range. Laser beam imaging technique based on charge coupled device (CCD) can solve the above difficulties caused by lidar effectively. Laser beam imaging technique is studied from theoretical analysis and simulation experiment, including imaging characteristics, the angle relationship between CCD image plane and lens plane, the influence of laser beam divergence angle on detecting spatial resolution. The comparison experiments show that laser beam imaging technique in detecting atmospherics is reliable and feasible. Furthermore, the application cases are given in detecting aerosol backscattering coefficient, aerosol extinction coefficient, aerosol phase function and PM2.5 mass concentration.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] UAV Onboard Third Harmonic Technique Laser Spectrometer Near Infrared Atmospheric Absorption Lines Detection
    Polyakov, V. M.
    Pavlova, A. L.
    Gill, V. V.
    2018 INTERNATIONAL CONFERENCE LASER OPTICS (ICLO 2018), 2018, : 287 - 287
  • [42] Overview of imaging laser radar technique
    Zhao, Yuan
    Cai, Xiping
    Chen, Zhongxian
    Han, Quan
    Jiguang Yu Hongwai/Laser and Infrared, 2000, 30 (06): : 328 - 330
  • [43] Study on laser active imaging technique
    Pang, CY
    Zhang, T
    Wang, DM
    ISTM/2005: 6th International Symposium on Test and Measurement, Vols 1-9, Conference Proceedings, 2005, : 3239 - 3240
  • [44] Modified astigmatic beam technique for laser writing
    Lapointe, Jerome
    Berube, Jean-Philippe
    Dupont, Albert
    Bellec, Matthieu
    Vallee, Real
    APPLIED OPTICS, 2022, 61 (09) : 2333 - 2337
  • [45] Beam photography: A technique for imaging dark currents
    Gruber, P
    Torun, Y
    PROCEEDINGS OF THE 2003 PARTICLE ACCELERATOR CONFERENCE, VOLS 1-5, 2003, : 1413 - 1415
  • [46] Coherence imaging for laser detection
    Benton, David M.
    Sugden, Kate
    Zandi, Marie
    ELECTRO-OPTICAL AND INFRARED SYSTEMS: TECHNOLOGY AND APPLICATIONS XVII, 2020, 11537
  • [47] Self-imaging technique for beam collimation
    Miguel Sanchez-Brea, Luis
    Jose Torcal-Milla, Francisco
    Maria Herrera-Fernandez, Jose
    Morlanes, Tomas
    Bernabeu, Eusebio
    OPTICS LETTERS, 2014, 39 (19) : 5764 - 5767
  • [48] Development of the imaging atmospheric Cherenkov technique at the whipple observatory
    Boyle, PJ
    RELATIVISTIC ASTROPHYSICS AND COSMOLOGY, 2004, 13 : 319 - 325
  • [49] VIDEO POLARIMETRY - A NEW IMAGING TECHNIQUE IN ATMOSPHERIC SCIENCE
    PROSCH, T
    HENNINGS, D
    RASCHKE, E
    APPLIED OPTICS, 1983, 22 (09): : 1360 - 1363
  • [50] BISTATIC IMAGING LIDAR TECHNIQUE FOR UPPER ATMOSPHERIC STUDIES
    WELSH, BM
    GARDNER, CS
    APPLIED OPTICS, 1989, 28 (01): : 82 - 88