Machine learning and data science in materials design: a themed collection

被引:4
|
作者
Ferguson, Andrew [1 ,2 ,3 ]
Hachmann, Johannes [4 ,5 ,6 ]
机构
[1] Univ Illinois, Dept Mat Sci & Engn, 1304 West Green St, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Chem & Biomol Engn, 600 South Mathews Ave, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA
[4] SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA
[5] New York State Ctr Excellence Mat Informat, Buffalo, NY 14203 USA
[6] SUNY Buffalo, Computat & Data Enabled Sci & Engn Grad Program, Buffalo, NY 14260 USA
来源
关键词
D O I
10.1039/c8me90007h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Guest Editors Andrew Ferguson and Johannes Hachmann introduce this themed collection of papers showcasing the latest research leveraging data science and machine learning approaches to guide the understanding and design of hard, soft, and biological materials with tailored properties, function and behaviour.
引用
收藏
页码:429 / 430
页数:2
相关论文
共 50 条
  • [21] Catalyze Materials Science with Machine Learning
    Kim, Jaehyun
    Kang, Donghoon
    Kim, Sangbum
    Jang, Ho Won
    ACS MATERIALS LETTERS, 2021, 3 (08): : 1151 - 1171
  • [22] Explainable machine learning in materials science
    Zhong, Xiaoting
    Gallagher, Brian
    Liu, Shusen
    Kailkhura, Bhavya
    Hiszpanski, Anna
    Han, T. Yong-Jin
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [23] Explainable machine learning in materials science
    Xiaoting Zhong
    Brian Gallagher
    Shusen Liu
    Bhavya Kailkhura
    Anna Hiszpanski
    T. Yong-Jin Han
    npj Computational Materials, 8
  • [24] Machine learning for molecular and materials science
    Butler, Keith T.
    Davies, Daniel W.
    Cartwright, Hugh
    Isayev, Olexandr
    Walsh, Aron
    NATURE, 2018, 559 (7715) : 547 - 555
  • [25] Editorial: Machine Learning in Materials Science
    Merz, Kenneth M.
    Choong, Yee Siew
    Cournia, Zoe
    Isayev, Olexandr
    Soares, Thereza A.
    Wei, Guo-Wei
    Zhu, Feng
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (10) : 3959 - 3960
  • [26] Advancement of machine learning in materials science
    Rajendra, P.
    Girisha, A.
    Naidu, T. Gunavardhana
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 5503 - 5507
  • [27] Machine learning for molecular and materials science
    Keith T. Butler
    Daniel W. Davies
    Hugh Cartwright
    Olexandr Isayev
    Aron Walsh
    Nature, 2018, 559 : 547 - 555
  • [28] Introduction to RSC Advances themed collection on Nanoarchitectonics Advances: Bridge over Nanotechnology and Materials Science
    Ariga, Katsuhiko
    Maeda, Hiromitsu
    Baudron, Stephane A.
    Chen, Yulan
    RSC ADVANCES, 2024, 14 (32) : 22799 - 22800
  • [29] Introduction to the Nanoscale & Nanoscale Advances joint themed collection: design and function of materials nanoarchitectonics
    Ariga, Katsuhiko
    Azzaroni, Omar
    NANOSCALE, 2022, 14 (33) : 11804 - 11805
  • [30] Review: Is design data collection still relevant in the big data era? With extensions to machine learning
    Freeman, Laura
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2023, 39 (04) : 1102 - 1106