General Type-2 Fuzzy Logic Systems Made Simple: A Tutorial

被引:217
|
作者
Mendel, Jerry M. [1 ]
机构
[1] Univ So Calif, Signal & Image Proc Inst, Los Angeles, CA 90089 USA
关键词
Alpha-plane; general type-2 fuzzy logic system; horizontal slice; interval type-2 fuzzy logic system; vertical slice; zSlice; PARTICLE SWARM OPTIMIZATION; ALPHA-PLANE REPRESENTATION; CENTROID-FLOW ALGORITHM; SETS THEORY; OPERATIONS; REDUCTION; DESIGN; INFERENCE; JOIN;
D O I
10.1109/TFUZZ.2013.2286414
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The purpose of this tutorial paper is to make general type-2 fuzzy logic systems (GT2 FLSs) more accessible to fuzzy logic researchers and practitioners, and to expedite their research, designs, and use. To accomplish this, the paper 1) explains four different mathematical representations for general type-2 fuzzy sets (GT2 FSs); 2) demonstrates that for the optimal design of a GT2 FLS, one should use the vertical-slice representation of its GT2 FSs because it is the only one of the four mathematical representations that is parsimonious; 3) shows how to obtain set theoretic and other operations for GT2 FSs using type-1 (T1) FS mathematics (alpha - cuts play a central role); 4) reviews Mamdani and TSK interval type-2 (IT2) FLSs so that their mathematical operations can be easily used in a GT2 FLS; 5) provides all of the formulas that describe both Mamdani and TSK GT2 FLSs; 6) explains why center-of sets type-reduction should be favored for a GT2 FLS over centroid type-reduction; 7) provides three simplified GT2 FLSs (two are for Mamdani GT2 FLSs and one is for a TSKGT2 FLS), all of which bypass type reduction and are generalizations from their IT2 FLS counterparts to GT2 FLSs; 8) explains why gradient-based optimization should not be used to optimally design a GT2 FLS; 9) explains how derivative-free optimization algorithms can be used to optimally design a GT2 FLS; and 10) provides a three-step approach for optimally designing FLSs in a progressive manner, from T1 to IT2 to GT2, each of which uses a quantum particle swarm optimization algorithm, by virtue of which the performance for the IT2 FLS cannot be worse than that of the T1 FLS, and the performance for the GT2 FLS cannot be worse than that of the IT2 FLS.
引用
收藏
页码:1162 / 1182
页数:21
相关论文
共 50 条
  • [41] General type-2 fuzzy logic systems based on refinement constraint triangulated irregular network
    Long Thanh Ngo
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2013, 25 (03) : 771 - 784
  • [42] Grid-based General Type-2 Fuzzy Logic Systems based on GPU Computing
    Long Thanh Ngo
    2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [43] Towards more efficient type-2 fuzzy logic systems
    Coupland, S
    John, RI
    FUZZ-IEEE 2005: PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS: BIGGEST LITTLE CONFERENCE IN THE WORLD, 2005, : 236 - 241
  • [44] On the importance of interval sets in type-2 fuzzy logic systems
    Mendel, JM
    JOINT 9TH IFSA WORLD CONGRESS AND 20TH NAFIPS INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS. 1-5, 2001, : 1647 - 1652
  • [45] Interval type-2 fuzzy logic systems: Theory and design
    Liang, QL
    Mendel, JM
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2000, 8 (05) : 535 - 550
  • [46] Computing derivatives in interval type-2 fuzzy logic systems
    Mendel, JM
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2004, 12 (01) : 84 - 98
  • [47] Juzzy - A Java']Java based Toolkit for Type-2 Fuzzy Logic An object-oriented toolkit for the development of type-1, interval type-2 and general type-2 fuzzy systems
    Wagner, Christian
    PROCEEDINGS OF THE 2013 IEEE SYMPOSIUM ON ADVANCES IN TYPE-2 FUZZY LOGIC SYSTEMS (T2FUZZ), 2013, : 45 - 52
  • [48] On Type-2 Fuzzy Sets and Type-2 Fuzzy Systems
    Shvedov A.S.
    Journal of Mathematical Sciences, 2021, 259 (3) : 376 - 384
  • [49] Type-2 fuzzy description logic
    Li, Ruixuan
    Wen, Kunmei
    Gu, Xiwu
    Li, Yuhua
    Sun, Xiaolin
    Li, Bing
    FRONTIERS OF COMPUTER SCIENCE IN CHINA, 2011, 5 (02): : 205 - 215
  • [50] A New Fuzzy Inference Technique for Singleton Type-2 Fuzzy Logic Systems
    Kwak, Hwan-Joo
    Kim, Dong-Won
    Park, Gwi-Tae
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2012, 9