Tailoring minimalist self-assembling peptides for localized viral vector gene delivery

被引:39
|
作者
Rodriguez, Alexandra L. [1 ]
Wang, Ting-Yi [2 ]
Bruggeman, Kiara F. [1 ]
Li, Rui [3 ]
Williams, Richard J. [4 ]
Parish, Clare L. [2 ]
Nisbet, David R. [1 ]
机构
[1] Australian Natl Univ, Res Sch Engn, Canberra, ACT 2601, Australia
[2] Univ Melbourne, Florey Inst Neurosci & Mental Hlth, Parkville, Vic 3010, Australia
[3] Deakin Univ, Ctr Chem & Biotechnol, Waurn Ponds, Vic 3217, Australia
[4] RMIT Univ, Res Inst, Sch Aerosp Mech & Mfg Engn & Hlth Innovat, Melbourne, Vic 3001, Australia
基金
澳大利亚研究理事会; 英国医学研究理事会;
关键词
viral vectors; gene therapy; self-assembling peptides; biomaterials; NEURAL PROGENITOR CELLS; STEM-CELLS; IN-VIVO; PARKINSONIAN MICE; SCAFFOLDS; THERAPY; HYDROGELS; DIFFERENTIATION; ADENOVIRUS; REPAIR;
D O I
10.1007/s12274-015-0946-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Viral vector gene delivery is a promising technique for the therapeutic administration of proteins to damaged tissue for the improvement of regeneration outcomes in various disease settings including brain and spinal cord injury, as well as autoimmune diseases. Though promising results have been demonstrated, limitations of viral vectors, including spread of the virus to distant sites, neutralization by the host immune system, and low transduction efficiencies have stimulated the investigation of biomaterials as gene delivery vehicles for improved protein expression at an injury site. Here, we show how Nfluorenylmethyloxycarbonyl (Fmoc) self-assembling peptide (SAP) hydrogels, designed for tissue-specific central nervous system (CNS) applications via incorporation of the laminin peptide sequence isoleucine-lysine-valine-alanine-valine (IKVAV), are effective as biocompatible, localized viral vector gene delivery vehicles in vivo. Through the addition of a C-terminal lysine (K) residue, we show that increased electrostatic interactions, provided by the additional amine side chain, allow effective immobilization of lentiviral vector particles, thereby limiting their activity exclusively to the site of injection and enabling focal gene delivery in vivo in a tissue-specific manner. When the C-terminal lysine was absent, no difference was observed between the number of transfected cells, the volume of tissue transfected, or the transfection efficiency with and without the Fmoc-SAP. Importantly, immobilization of the virus only affected transfection cell number and volume, with no impact observed on transfection efficiency. This hydrogel allows the sustained and targeted delivery of growth factors post injury. We have established Fmoc-SAPs as a versatile platform for enhanced biomaterial design for a range of tissue engineering applications.
引用
收藏
页码:674 / 684
页数:11
相关论文
共 50 条
  • [31] Self-assembling gelling formulation based on a crystalline-phase liquid as a non-viral vector for siRNA delivery
    Borgheti-Cardoso, Livia Neves
    Depieri, Livia Vieira
    Diniz, Henrique
    Junqueira Calzzani, Ricardo Alexandre
    de Abreu Fantini, Marcia Carvalho
    Iyomasa, Mamie Mizusaki
    Moura de Carvalho Vicentini, Fabiana Testa
    Lopes Badra Bentley, Maria Vitoria
    EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2014, 58 : 72 - 82
  • [32] Amphiphilic dendrimers: Novel self-assembling vectors for efficient gene delivery
    Joester, D
    Losson, M
    Pugin, R
    Heinzelmann, H
    Walter, E
    Merkle, HP
    Diederich, F
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (13) : 1486 - 1490
  • [33] Modulation of self-assembling of pyridinium cationic amphiphiles for enhanced gene delivery
    Ilies, Marc A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [34] Biomimetic mineralization based on self-assembling peptides
    Li, Qing
    Wang, Yuefei
    Zhang, Gong
    Su, Rongxin
    Qi, Wei
    CHEMICAL SOCIETY REVIEWS, 2023, 52 (05) : 1549 - 1590
  • [35] Recyclable bionanostructures from self-assembling peptides
    Mitchell, D. E.
    Ciani, B.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2017, 46 : S306 - S306
  • [36] Self-assembling peptides and their potential applications in biomedicine
    Rymer, Sarah-Jane
    Tendler, Saul J. B.
    Bosquillon, Cynthia
    Washington, Clive
    Roberts, Clive J.
    THERAPEUTIC DELIVERY, 2011, 2 (08) : 1043 - 1056
  • [37] Self-assembling multidomain peptides for tissue regeneration
    Hartgerink, Jeffrey
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [38] Self-assembling peptides and proteins for nanotechnological applications
    Rajagopal, K
    Schneider, JP
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2004, 14 (04) : 480 - 486
  • [39] Novel self-assembling copolymers for sustained gene delivery in the presence of serum
    Agarwal, Ankit
    Unfer, Rober C.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [40] Self-assembling porphyrin-modified peptides
    Dunetz, JR
    Sandstrom, C
    Young, ER
    Baker, P
    Van Name, SA
    Cathopolous, T
    Fairman, R
    de Paula, JC
    Åkerfeldt, KS
    ORGANIC LETTERS, 2005, 7 (13) : 2559 - 2561