Tailoring minimalist self-assembling peptides for localized viral vector gene delivery

被引:39
|
作者
Rodriguez, Alexandra L. [1 ]
Wang, Ting-Yi [2 ]
Bruggeman, Kiara F. [1 ]
Li, Rui [3 ]
Williams, Richard J. [4 ]
Parish, Clare L. [2 ]
Nisbet, David R. [1 ]
机构
[1] Australian Natl Univ, Res Sch Engn, Canberra, ACT 2601, Australia
[2] Univ Melbourne, Florey Inst Neurosci & Mental Hlth, Parkville, Vic 3010, Australia
[3] Deakin Univ, Ctr Chem & Biotechnol, Waurn Ponds, Vic 3217, Australia
[4] RMIT Univ, Res Inst, Sch Aerosp Mech & Mfg Engn & Hlth Innovat, Melbourne, Vic 3001, Australia
基金
澳大利亚研究理事会; 英国医学研究理事会;
关键词
viral vectors; gene therapy; self-assembling peptides; biomaterials; NEURAL PROGENITOR CELLS; STEM-CELLS; IN-VIVO; PARKINSONIAN MICE; SCAFFOLDS; THERAPY; HYDROGELS; DIFFERENTIATION; ADENOVIRUS; REPAIR;
D O I
10.1007/s12274-015-0946-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Viral vector gene delivery is a promising technique for the therapeutic administration of proteins to damaged tissue for the improvement of regeneration outcomes in various disease settings including brain and spinal cord injury, as well as autoimmune diseases. Though promising results have been demonstrated, limitations of viral vectors, including spread of the virus to distant sites, neutralization by the host immune system, and low transduction efficiencies have stimulated the investigation of biomaterials as gene delivery vehicles for improved protein expression at an injury site. Here, we show how Nfluorenylmethyloxycarbonyl (Fmoc) self-assembling peptide (SAP) hydrogels, designed for tissue-specific central nervous system (CNS) applications via incorporation of the laminin peptide sequence isoleucine-lysine-valine-alanine-valine (IKVAV), are effective as biocompatible, localized viral vector gene delivery vehicles in vivo. Through the addition of a C-terminal lysine (K) residue, we show that increased electrostatic interactions, provided by the additional amine side chain, allow effective immobilization of lentiviral vector particles, thereby limiting their activity exclusively to the site of injection and enabling focal gene delivery in vivo in a tissue-specific manner. When the C-terminal lysine was absent, no difference was observed between the number of transfected cells, the volume of tissue transfected, or the transfection efficiency with and without the Fmoc-SAP. Importantly, immobilization of the virus only affected transfection cell number and volume, with no impact observed on transfection efficiency. This hydrogel allows the sustained and targeted delivery of growth factors post injury. We have established Fmoc-SAPs as a versatile platform for enhanced biomaterial design for a range of tissue engineering applications.
引用
收藏
页码:674 / 684
页数:11
相关论文
共 50 条
  • [1] Tailoring minimalist self-assembling peptides for localized viral vector gene delivery
    Alexandra L. Rodriguez
    Ting-Yi Wang
    Kiara F. Bruggeman
    Rui Li
    Richard J. Williams
    Clare L. Parish
    David R. Nisbet
    Nano Research, 2016, 9 : 674 - 684
  • [2] Minimalist Prion-Inspired Polar Self-Assembling Peptides
    Diaz-Caballero, Marta
    Navarro, Susanna
    Fuentes, Isabel
    Teixidor, Francesc
    Ventura, Salvador
    ACS NANO, 2018, 12 (06) : 5394 - 5407
  • [3] Engineering self-assembling peptide scaffolds for controlled delivery of viral vector serotypes
    Dehnavi, Shiva Soltani
    Cembran, Arianna
    Lisowski, Leszek
    Harvey, Alan
    Parish, Clare
    Williams, Richard
    Nisbet, David
    TISSUE ENGINEERING PART A, 2022, 28 : 113 - 113
  • [4] Local delivery of proteins and the use of self-assembling peptides
    Segers, Vincent F. M.
    Lee, Richard T.
    DRUG DISCOVERY TODAY, 2007, 12 (13-14) : 561 - 568
  • [5] Self-assembling complexes for in vivo gene delivery
    Hagstrom, JE
    CURRENT OPINION IN MOLECULAR THERAPEUTICS, 2000, 2 (02) : 143 - 149
  • [6] Supramolecular nanofibers of self-assembling peptides and proteins for protein delivery
    Wang, Huaimin
    Wang, Youzhi
    Zhang, Xiaoli
    Hu, Yawen
    Yi, Xiaoyong
    Ma, Linsha
    Zhou, Hao
    Long, Jiafu
    Liu, Qian
    Yang, Zhimou
    CHEMICAL COMMUNICATIONS, 2015, 51 (75) : 14239 - 14242
  • [7] Self-assembling amphiphilic peptides
    Dehsorkhi, Ashkan
    Castelletto, Valeria
    Hamley, Ian W.
    JOURNAL OF PEPTIDE SCIENCE, 2014, 20 (07) : 453 - 467
  • [8] Self-assembling Pluronic®-modified polycations in gene delivery
    Bromberg, Lev
    Alakhov, Valery Yu.
    Hatton, T. Alan
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2006, 11 (04) : 217 - 223
  • [9] A new self-assembling system for targeted gene delivery
    Eaton, MAW
    Baker, TS
    Catterall, CF
    Crook, K
    Macaulay, GS
    Mason, B
    Norman, TJ
    Parker, D
    Perry, JJB
    Taylor, RJ
    Turner, A
    Weir, AN
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2000, 39 (22) : 4063 - 4067
  • [10] Prospects for synthetic self-assembling systems in gene delivery
    Felgner, PL
    JOURNAL OF GENE MEDICINE, 1999, 1 (04): : 290 - 292