Upper triangular matrix of lie algebra and a new discrete integrable coupling system

被引:0
|
作者
Yu Fa-Jun [1 ]
Zhang Hong-Qing [1 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
关键词
upper triangular matrix; Lie algebra; integrable coupling system;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The upper triangular matrix of Lie algebra is used to construct integrable couplings of discrete solition equations. Correspondingly, a feasible way to construct integrable couplings is presented. A nonlinear lattice soliton equation spectral problem is obtained and leads to a novel hierarchy of the nonlinear lattice equation hierarchy It indicates that the study of integrable couplings using upper triangular matrix of Lie algebra is an important step towards constructing integrable systems.
引用
收藏
页码:393 / 396
页数:4
相关论文
共 50 条
  • [21] The computation of abelian subalgebras in the Lie algebra of upper-triangular matrices
    Ceballos, Manuel
    Nunez, Juan
    Tenorio, Angel F.
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2008, 16 (01): : 59 - 66
  • [22] Linear Lie centralizers of the algebra of dominant block upper triangular matrices
    Ghimire, Prakash
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (20): : 5040 - 5051
  • [23] LINEAR LIE CENTRALIZERS OF THE ALGEBRA OF STRICTLY BLOCK UPPER TRIANGULAR MATRICES
    Ghimire, Prakash
    OPERATORS AND MATRICES, 2021, 15 (01): : 303 - 311
  • [24] Lie triple centralizers of the algebra of dominant block upper triangular matrices
    Ghimire, Prakash
    Benavides, Magdalena
    King, Sheral
    Young, Lavona
    LINEAR & MULTILINEAR ALGEBRA, 2025, 73 (01): : 163 - 175
  • [25] The integrable coupling system of a 3 x 3 discrete matrix spectral problem
    Zhao, Qiu-Lan
    Wang, Xin-Zeng
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (03) : 730 - 743
  • [26] A New Lie Algebra and a Way to Generate Multiple Integrable Couplings
    FENG Bin-Lu~(1
    Communications in Theoretical Physics, 2007, 48 (12) : 979 - 982
  • [27] New extended Lie algebra and the generalized integrable Liouville hierarchy
    Zhao, Weidong
    Dong, Huanhe
    Wang, Hui
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (02) : 643 - 650
  • [28] A New Lie Algebra and Its Related Liouville Integrable Hierarchies
    Wang Hui
    Wang Xin-Zeng
    Liu Guo-Dong
    Yang Ji-Ming
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 54 (03) : 407 - 411
  • [29] A New Lie Algebra and Its Related Liouville Integrable Hierarchies
    王惠
    王新赠
    刘国栋
    杨记明
    CommunicationsinTheoreticalPhysics, 2010, 54 (09) : 407 - 411
  • [30] A new Lie algebra and a way to generate multiple integrable couplings
    Feng Bin-Lu
    Han Bo
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2007, 48 (06) : 979 - 982