On the Existence of Resolvable (K 3 + e)-Group Divisible Designs

被引:3
|
作者
Wang, Lidong [1 ]
机构
[1] Chinese Peoples Armed Police Force Acad, Dept Basic Courses, Langfang 065000, Hebei, Peoples R China
关键词
(K-3 + e)-group divisible design; Resolvable; (K-3 + e)-frame; DESIGNS;
D O I
10.1007/s00373-010-0954-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, it is shown that the necessary conditions for the existence of resolvable (K (3) + e)-group divisible designs with group-type g (u) are also sufficient.
引用
收藏
页码:879 / 889
页数:11
相关论文
共 50 条
  • [41] EXISTENCE OF RESOLVABLE PATH DESIGNS
    BERMOND, JC
    HEINRICH, K
    YU, ML
    EUROPEAN JOURNAL OF COMBINATORICS, 1990, 11 (03) : 205 - 211
  • [42] Frames and Doubly Resolvable Group Divisible Designs with Block Size Three and Index Two
    Xiaoyuan Dong
    Jinhua Wang
    Graphs and Combinatorics, 2023, 39
  • [43] Frames and Doubly Resolvable Group Divisible Designs with Block Size Three and Index Two
    Dong, Xiaoyuan
    Wang, Jinhua
    GRAPHS AND COMBINATORICS, 2023, 39 (05)
  • [44] α-Resolvable Group Divisible Designs with Block Size Four and Groups Size Six and Nine
    Meng, Zhaoping
    Du, Beiliang
    UTILITAS MATHEMATICA, 2009, 78 : 203 - 237
  • [45] The existence of group divisible designs with first and second associates, having block size 3
    Fu, HL
    Rodger, CA
    Sarvate, DG
    ARS COMBINATORIA, 2000, 54 : 33 - 50
  • [46] Existence of labeled resolvable block designs
    Shen, H
    Wang, MJ
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 1998, 5 (2-3) : 427 - 439
  • [47] ON GROUP DIVISIBLE DESIGNS
    Ghosh, D. K.
    Sinojia, N. C.
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 (01): : 139 - 146
  • [48] Asymptotic existence of resolvable graph designs
    Dukes, Peter
    Ling, Alan C. H.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2007, 50 (04): : 504 - 518
  • [49] Completing the Spectrum of Resolvable (K4 - e)-Designs
    Wang, Lidong
    ARS COMBINATORIA, 2012, 105 : 289 - 291
  • [50] The existence of resolvable Mendelsohn designs RMD ({3, s*}, v)
    Zhang, Yan
    Du, Beiliang
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2005, 32 : 197 - 204