DOUBLY ROBUST AND LOCALLY EFFICIENT ESTIMATION WITH MISSING OUTCOMES

被引:2
|
作者
Han, Peisong [1 ]
Wang, Lu [2 ]
Song, Peter X. -K. [2 ]
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Augmented inverse probability weighting (AIPW); auxiliary variables; conditional empirical likelihood; mean regression; missing at random (MAR); surrogate outcome; SEMIPARAMETRIC REGRESSION-MODELS; LIKELIHOOD-BASED INFERENCE; EMPIRICAL-LIKELIHOOD;
D O I
10.5705/ss.2014.030
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider parametric regression where the outcome is subject to missingness. To achieve the semiparametric efficiency bound, most existing estimation methods require the correct modeling of certain second moments of the data, which can be very challenging in practice. We propose an estimation procedure based on the conditional empirical likelihood (CEL) method. Our method does not require us to model any second moments. We study the CEL-based inverse probability weighted (CEL-IPW) and augmented inverse probability weighted (CEL-AIPW) estimators in detail. Under some regularity conditions and the missing at random (MAR) mechanism, the CEL-IPW estimator is consistent if the missingness mechanism is correctly modeled, and the CEL-AIPW estimator is consistent if either the missingness mechanism or the conditional mean of the outcome is correctly modeled. When both quantities are correctly modeled, the CEL-AIPW estimator attains the semiparametric efficiency bound without modeling any second moments. The asymptotic distributions are derived. Numerical implementation through nested optimization routines using the Newton-Raphson algorithm is discussed.
引用
收藏
页码:691 / 719
页数:29
相关论文
共 50 条
  • [21] Robust doubly protected estimators for quantiles with missing data
    Sued, Mariela
    Valdora, Marina
    Yohai, Victor
    TEST, 2020, 29 (03) : 819 - 843
  • [22] DOUBLY ROBUST INFERENCE WITH MISSING DATA IN SURVEY SAMPLING
    Kim, Jae Kwang
    Haziza, David
    STATISTICA SINICA, 2014, 24 (01) : 375 - 394
  • [23] A comparison of doubly robust estimators of the mean with missing data
    Yang, Ye
    Little, Roderick
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (16) : 3383 - 3403
  • [24] Doubly Robust Estimation of Causal Effects
    Funk, Michele Jonsson
    Westreich, Daniel
    Wiesen, Chris
    Stuermer, Til
    Brookhart, M. Alan
    Davidian, Marie
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2011, 173 (07) : 761 - 767
  • [25] Doubly robust estimation of attributable fractions
    Sjolander, Arvid
    Vansteelandt, Stijn
    BIOSTATISTICS, 2011, 12 (01) : 112 - 121
  • [26] On doubly robust estimation of the hazard difference
    Dukes, Oliver
    Martinussen, Torben
    Tchetgen, Eric J. Tchetgen
    Vansteelandt, Stijn
    BIOMETRICS, 2019, 75 (01) : 100 - 109
  • [27] Locally robust Msplit estimation
    Wyszkowska, Patrycja
    Duchnowski, Robert
    JOURNAL OF APPLIED GEODESY, 2024,
  • [28] Locally Robust Semiparametric Estimation
    Chernozhukov, Victor
    Carlos Escanciano, Juan
    Ichimura, Hidehiko
    Newey, Whitney K.
    Robins, James M.
    ECONOMETRICA, 2022, 90 (04) : 1501 - 1535
  • [29] Semiparametric double robust and efficient estimation for mean functionals with response missing at random
    Guo, Xu
    Fang, Yun
    Zhu, Xuehu
    Xu, Wangli
    Zhu, Lixing
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 128 : 325 - 339
  • [30] Missing samples reconstruction using an efficient and robust instantaneous frequency estimation algorithm
    Ali, Sadiq
    Khan, Nabeel Ali
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2022, 30 (04) : 1284 - 1298