Simulation of Combustion Flow of Methane Gas in a Premixed Low-Swirl Burner using a Partially Premixed Combustion Model

被引:4
|
作者
Xiao Caiyuan [1 ,2 ]
Omidi, Milad [3 ]
Surendar, A. [4 ]
Alizadeh, As'ad [5 ,6 ]
Bokov, Dmitry O. [7 ]
Binyamin [8 ]
Toghraie, Davood [3 ]
机构
[1] Key Lab Hunan Prov Efficient Power Syst & Intelli, Shaoyang 422000, Peoples R China
[2] Shaoyang Univ, Coll Mech & Energy Engn, Shaoyang 422000, Peoples R China
[3] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr 11984175, Iran
[4] Saveetha Dent Coll & Hosp, Saveetha Inst Med & Tech Sci, Dept Pharmacol, Chennai 602105, Tamil Nadu, India
[5] Soran Univ, Fac Engn, Soran 651, Iraq
[6] Univ Zakho, Coll Engn, Dept Mech Engn, Zakho 1653654, Iraq
[7] Sechenov First Moscow State Med Univ, Inst Pharm, Moscow 119991, Russia
[8] Univ Muhammadiyah Kalimantan Timur, Fac Sci & Technol, Dept Mech Engn, Samarinda 75124, Indonesia
关键词
swirl burner; numerical simulation; axial velocity; premixed combustion; V-shaped flame; INVERSE DIFFUSION; FLAME STABILITY; PERFORMANCE; REDUCTION;
D O I
10.1007/s11630-022-1611-z
中图分类号
O414.1 [热力学];
学科分类号
摘要
Because the rotational current stabilizes the flame by creating a recirculation zone, it may increase the risk of reversal. For this reason, low-spin combustion is used to stabilize the flame while preventing flashbacks. Therefore, in this study, the combustion flow of methane gas in a low-swirl burner is simulated using a partially premixed combustion model. Furthermore, the fuel flow rate is considered constant. The research parameters include swirl angle (theta=35 degrees-47 degrees), equivalence ratio (phi=0.6-0.9) and inlet axial flow radius (R=0.6-0.7) and effect of these parameters on temperature distribution, flame length, flame rise length, velocity field, and streamlines of the number of pollutant species are investigated. The contours of streamline, temperature distribution, and velocity distribution are also presented for analysis of flow physics. The results show that with increasing the fuel-air ratio, the strength of the axial flow decreases, and the position of the maximum flame temperature shifts toward the inlet of the reactants. The results also reveal that by increasing the swirl angle of the flow, the position of the minimum velocity value (opposite to the direction of the axis) tends towards the outlet. The results also indicate that the maximum temperature of the combustion chamber increases with increasing the swirl angle, and in theta=35 degrees, the maximum temperature is 1711 degrees C and in theta=41 degrees, this value is 1812 degrees C. Finally, by increasing the swirl angle to theta=47 degrees, the maximum flame temperature position is found at a considerable distance from the inlet and is 1842 degrees C.
引用
收藏
页码:1663 / 1681
页数:19
相关论文
共 50 条
  • [21] Premixed swirl combustion modes emerging for a burner tube with converging entrance
    Owaki, Takashi
    Umemura, Akira
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2007, 31 : 1067 - 1074
  • [22] Experimental investigations on combustion characteristics of a swirl-stabilized premixed burner
    Ju Hyeong Cho
    Han Seok Kim
    Min Kuk Kim
    Jeong Jae Hwang
    Sang Min Lee
    Ta Kwan Woo
    Journal of Mechanical Science and Technology, 2016, 30 : 925 - 932
  • [23] Experimental investigations on combustion characteristics of a swirl-stabilized premixed burner
    Cho, Ju Hyeong
    Kim, Han Seok
    Kim, Min Kuk
    Hwang, Jeong Jae
    Lee, Sang Min
    Woo, Ta Kwan
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2016, 30 (02) : 925 - 932
  • [24] Measurements of the turbulent burning velocity and the structure of premixed flames on a low-swirl burner
    Plessing, T
    Kortschik, C
    Peters, N
    Mansour, MS
    Cheng, RK
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2000, 28 : 359 - 366
  • [25] Numerical simulation of laminar premixed combustion in a porous burner
    Zhao P.
    Chen Y.
    Liu M.
    Ding M.
    Zhang G.
    Frontiers of Energy and Power Engineering in China, 2007, 1 (2): : 233 - 238
  • [26] Experimental Analysis on Flame Flickering of a Swirl Partially Premixed Combustion
    Xi, Zhongya
    Fu, Zhongguang
    Sabir, Syed Waqas
    Hu, Xiaotian
    Jiang, Yibo
    Zhang, Tao
    ENERGIES, 2018, 11 (09)
  • [27] Subadiabatic combustion of premixed gas in ceramic foam burner
    Dai, Huaming
    Lin, Baiquan
    Zhai, Cheng
    Hong, Yidu
    Li, Qingzhao
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 91 : 318 - 329
  • [28] EXPERIMENTAL AND NUMERICAL INVESTIGATIONS OF LOW-SWIRL MULTI-NOZZLE COMBUSTION IN A LEAN PREMIXED COMBUSTOR
    Liu, Weijie
    Ge, Bing
    Tian, Yinshen
    Yuan, Yongwen
    Zang, Shusheng
    Weng, Shilie
    Zhang, Dongfang
    Cui, Yaoxin
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2014, VOL 4A, 2014,
  • [29] Investigation on the Effect of the Burner Outlet Configuration on the Combustion Characteristics of a Swirl-premixed Burner
    Ju, Hae-ji
    Cho, Ju Hyeong
    Hwang, Jeongjae
    Kim, Min Kuk
    Kim, Han Seok
    Lee, Won June
    JOURNAL OF THE KOREAN SOCIETY OF COMBUSTION, 2020, 25 (04) : 47 - 55
  • [30] Experimental investigations and large-eddy simulation of low-swirl combustion in a lean premixed multi-nozzle combustor
    W. J. Liu
    B. Ge
    Y. S. Tian
    Y. W. Yuan
    S. S. Zang
    S. L. Weng
    Experiments in Fluids, 2015, 56