Analysis of the effect of a mean velocity field on a mean field dynamo

被引:1
|
作者
Kandus, Alejandra [1 ]
机构
[1] Univ Estadual Santa Cruz, Dept Ciencias Exactas & Technol, Lab Astrofis Teor & Observ, BR-45662000 Salobrinho, BA, Brazil
关键词
magnetic fields; MHD; turbulence;
D O I
10.1111/j.1365-2966.2007.11863.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study semi-analytically and in a consistent manner the generation of a mean velocity field (U) over bar by helical magnetohydrodynamical (MHD) turbulence, and the effect that this field can have on a mean field dynamo. Assuming a prescribed, maximally helical small-scale velocity field, we show that large-scale flows can be generated in MHD turbulent flows via small-scale Lorentz force. These flows back-react on the mean electromotive force of a mean field dynamo through new terms, leaving the original alpha and beta terms explicitly unmodified. Cross-helicity plays the key role in interconnecting all the effects. In the minimal tau closure that we chose to work with, the effects are stronger for large relaxation times.
引用
收藏
页码:1356 / 1364
页数:9
相关论文
共 50 条
  • [31] HELICITY CONSERVATION IN NONLINEAR MEAN-FIELD SOLAR DYNAMO
    Pipin, V. V.
    Sokoloff, D. D.
    Zhang, H.
    Kuzanyan, K. M.
    ASTROPHYSICAL JOURNAL, 2013, 768 (01):
  • [32] Nonlinear mean-field dynamo and prediction of solar activity
    Saullin, N.
    Kleeorin, N.
    Porshnev, S.
    Rogachevskii, I.
    Ruzmaikin, A.
    JOURNAL OF PLASMA PHYSICS, 2018, 84 (03)
  • [33] INVESTIGATIONS OF SPHERICAL KINEMATIC MEAN-FIELD DYNAMO MODELS
    RADLER, KH
    ASTRONOMISCHE NACHRICHTEN, 1986, 307 (02) : 89 - 113
  • [34] MEAN-FIELD DYNAMO WITH CUBIC NON-LINEARITY
    KLEEORIN, NI
    RUZMAIKIN, AA
    ASTRONOMISCHE NACHRICHTEN, 1984, 305 (05) : 265 - 275
  • [35] SOLAR IRRADIANCE VARIATIONS AND NONLINEAR MEAN-FIELD DYNAMO
    KLEEORIN, N
    ROGACHEVSKII, I
    RUZMAIKIN, A
    SOLAR PHYSICS, 1994, 155 (02) : 223 - 234
  • [36] A spectral solution of nonlinear mean field dynamo equations: With inertia
    Rahman, Mohammad M.
    Fearn, David R.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (03) : 422 - 435
  • [37] Nonlinear turbulent magnetic diffusion and mean-field dynamo
    Rogachevskii, I
    Kleeorin, N
    PHYSICAL REVIEW E, 2001, 64 (05): : 14
  • [38] Mean-field dynamo action in renovating shearing flows
    Kolekar, Sanved
    Subramanian, Kandaswamy
    Sridhar, S.
    PHYSICAL REVIEW E, 2012, 86 (02):
  • [39] Mean-field dynamo in partially ionized plasmas - I
    Krishan, V.
    Gangadhara, R. T.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 385 (02) : 849 - 853
  • [40] On the inverse dynamo problem in a simplified mean-field model
    Kaiser, R.
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2008, 102 (05): : 477 - 487