Critical histone post-translational modifications for centromere function and propagation

被引:15
|
作者
Fukagawa, Tatsuo [1 ]
机构
[1] Osaka Univ, Grad Sch Frontier Biosci, Suita, Osaka 5650871, Japan
关键词
centromere; CENP-A; histone modification; kinetochore; CENP-A DEPOSITION; CELL-CYCLE; VERTEBRATE KINETOCHORE; CHROMATIN; NUCLEOSOME; PHOSPHORYLATION; TRANSCRIPTION; SUFFICIENT; DISTINCT; DNA;
D O I
10.1080/15384101.2017.1325044
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The centromere is a critical genomic region that enables faithful chromosome segregation during mitosis, and must be distinguishable from other genomic regions to facilitate establishment of the kinetochore. The centromere-specific histone H3-variant CENP-A forms a special nucleosome that functions as a marker for centromere specification. In addition to the CENP-A nucleosomes, there are additional H3 nucleosomes that have been identified in centromeres, both of which are predicted to exhibit specific features. It is likely that the composite organization of CENP-A and H3 nucleosomes contributes to the formation of centromere-specific chromatin, termed centrochromatin'. Recent studies suggest that centrochromatin has specific histone modifications that mediate centromere specification and kinetochore assembly. We use chicken non-repetitive centromeres as a model of centromeric activities to characterize functional features of centrochromatin. This review discusses our recent progress, and that of various other research groups, in elucidating the functional roles of histone modifications in centrochromatin.
引用
收藏
页码:1259 / 1265
页数:7
相关论文
共 50 条
  • [31] Post-translational Modifications Regulate Class IIa Histone Deacetylase (HDAC) Function in Health and Disease
    Mathias, Rommel A.
    Guise, Amanda J.
    Cristea, Ileana M.
    MOLECULAR & CELLULAR PROTEOMICS, 2015, 14 (03) : 456 - 470
  • [32] Function of Centriolar Satellites and Regulation by Post-Translational Modifications
    Renaud, Clotilde C. N.
    Bidere, Nicolas
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [33] Post-translational modifications of coronavirus proteins: roles and function
    Fung, To Sing
    Liu, Ding Xiang
    FUTURE VIROLOGY, 2018, 13 (06) : 405 - 430
  • [34] Control of STIM and Orai function by post-translational modifications
    Johnson, Jinsy
    Blackman, Rachel
    Gross, Scott
    Soboloff, Jonathan
    CELL CALCIUM, 2022, 103
  • [35] Cell function and mitochondrial protein post-translational modifications
    Lam, P.
    Yap, L.
    Cadenas, E.
    FREE RADICAL RESEARCH, 2008, 42 : S29 - S29
  • [36] Chemical approaches to mapping the function of post-translational modifications
    Gamblin, David P.
    van Kasteren, Sander I.
    Chalker, Justin M.
    Davis, Benjamin G.
    FEBS JOURNAL, 2008, 275 (09) : 1949 - 1959
  • [37] Histone post-translational modifications associated to BAALC expression in leukemic cells
    Franzoni, Alessandra
    Passon, Nadia
    Fabbro, Dora
    Tiribelli, Mario
    Damiani, Daniela
    Damante, Giuseppe
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2012, 417 (02) : 721 - 725
  • [38] Mapping Out Histone Post-Translational Modifications in a Yeast Prion Model
    Cobos, Samantha N.
    Son, Elizaveta
    Paredes, Jailene
    Rana, Navin
    Bennett, Seth A.
    Torrente, Mariana P.
    FASEB JOURNAL, 2022, 36
  • [39] Enhanced top-down characterization of histone post-translational modifications
    Tian, Zhixin
    Tolic, Nikola
    Zhao, Rui
    Moore, Ronald J.
    Hengel, Shawna M.
    Robinson, Errol W.
    Stenoien, David L.
    Wu, Si
    Smith, Richard D.
    Pasa-Tolic, Ljiljana
    GENOME BIOLOGY, 2012, 13 (10)
  • [40] Identification of novel histone post-translational modifications by peptide mass fingerprinting
    Liwen Zhang
    Ericka E. Eugeni
    Mark R. Parthun
    Michael A. Freitas
    Chromosoma, 2003, 112 : 77 - 86