ON INERTIAL TYPE SELF-ADAPTIVE ITERATIVE ALGORITHMS FOR SOLVING PSEUDOMONOTONE EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS

被引:15
|
作者
Ogbuisi, F. U. [1 ,2 ]
Iyiola, O. S. [3 ]
Ngnotchouye, J. M. T. [1 ]
Shumba, T. M. M. [4 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
[2] Univ Nigeria, Dept Math, Nsukka, Nigeria
[3] Calif Univ Penn, Dept Math & Phys Sci, California, PA 15419 USA
[4] Univ Johannesburg, Dept Math & Appl Math, Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
Metric projection; Inertial extrapolation term; Equilibrium problem; Subgradient extragradient algorithm; Quasi-nonexpansive mapping; CONVERGENCE THEOREMS;
D O I
10.23952/jnfa.2021.4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study an inertial accelerated iterative algorithm with a self-adaptive stepsize for finding a common solution of an equilibrium problem involving a pseudomonotone bifunction and a fixed point problem of a quasi-nonexpansive mapping with a demiclosedness property in a real Hilbert space. The algorithm is based on the subgradient extragradient method and the inertial method and this algorithm does not require a prior knowledge of the Lipschitz type constants of the pseudomonotone bifunction. We establish a weak convergence theorem of the modified iterative method under some standard assumptions. We also give some numerical examples to demonstrate the efficiency and applicability of the new algorithm.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] A self-adaptive inertial subgradient extragradient algorithm for solving bilevel equilibrium problems
    Jolaoso, Lateef Olakunle
    Aremu, Kazeem Olalekan
    Oyewole, Olawale Kazeem
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (07) : 3637 - 3658
  • [42] A self-adaptive inertial subgradient extragradient algorithm for solving bilevel equilibrium problems
    Lateef Olakunle Jolaoso
    Kazeem Olalekan Aremu
    Olawale Kazeem Oyewole
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 3637 - 3658
  • [43] EXTRAGRADIENT ALGORITHMS FOR SPLIT PSEUDOMONOTONE EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS IN HILBERT SPACES
    Wang, Shenghua
    Zhang, Yifan
    Wang, Wenxin
    Guo, Haichao
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2019, 2019
  • [44] Inertial-Viscosity-Type Algorithms for Solving Generalized Equilibrium and Fixed Point Problems in Hilbert Spaces
    Taiwo, Adeolu
    Mewomo, Oluwatosin Temitope
    VIETNAM JOURNAL OF MATHEMATICS, 2022, 50 (01) : 125 - 149
  • [45] Inertial-Viscosity-Type Algorithms for Solving Generalized Equilibrium and Fixed Point Problems in Hilbert Spaces
    Adeolu Taiwo
    Oluwatosin Temitope Mewomo
    Vietnam Journal of Mathematics, 2022, 50 : 125 - 149
  • [46] ON A NEW ITERATIVE METHOD FOR SOLVING EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS
    Yazdi, Maryam
    Sababe, Saeed hashemi
    FIXED POINT THEORY, 2024, 25 (01): : 419 - 434
  • [47] A Weak Convergence Self-Adaptive Method for Solving Pseudomonotone Equilibrium Problems in a Real Hilbert Space
    Yordsorn, Pasakorn
    Kumam, Poom
    Rehman, Habib Ur
    Ibrahim, Abdulkarim Hassan
    MATHEMATICS, 2020, 8 (07)
  • [48] An inertial shrinking projection self-adaptive algorithm for solving split variational inclusion problems and fixed point problems in Banach spaces
    Ngwepe, Matlhatsi Dorah
    Jolaoso, Lateef Olakunle
    Aphane, Maggie
    Adiele, Ugochukwu Oliver
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [49] Modified Popov's explicit iterative algorithms for solving pseudomonotone equilibrium problems
    Rehman, Habib
    Kumam, Poom
    Cho, Yeol
    Suleiman, Yusuf I.
    Kumam, Wiyada
    OPTIMIZATION METHODS & SOFTWARE, 2021, 36 (01): : 82 - 113
  • [50] An extragradient algorithm for fixed point problems and pseudomonotone equilibrium problems
    Yao, Zhangsong
    Liou, Yeong-Cheng
    Zhu, Li-Jun
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2020, 82 (04): : 89 - 96