Optimal algorithmic complexity of fuzzy ART

被引:15
|
作者
Burwick, T [1 ]
Joublin, F [1 ]
机构
[1] Ruhr Univ Bochum, Inst Neuroinformat, D-44780 Bochum, Germany
关键词
adaptive resonance theory; algorithmic complexity; fuzzy systems; neural networks; unsupervised learning;
D O I
10.1023/A:1009632604848
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We discuss implementations of the Adaptive Resonance Theory (ART) on a serial machine. The standard formulation of ART, which was inspired by recurrent brain structures, corresponds to a recursive algorithm. This induces an algorithmic complexity of order O(N-2)+O(MN) in worst and average case, N being the number of categories, and M the input dimension. It is possible, however, to formulate ART in a non-recursive algorithm such that the complexity is of order O(MN) only.
引用
收藏
页码:37 / 41
页数:5
相关论文
共 50 条
  • [21] Kolmogorov complexity and algorithmic randomness
    Rojas, J. Maurice
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 57 (02) : 339 - 346
  • [22] THE ALGORITHMIC COMPLEXITY OF COLOR SWITCHING
    CHEE, YM
    LIM, A
    INFORMATION PROCESSING LETTERS, 1992, 43 (02) : 63 - 68
  • [23] Algorithmic complexity of financial motions
    Brandouy, Olivier
    Delahaye, Jean-Paul
    Ma, Lin
    Zenil, Hector
    RESEARCH IN INTERNATIONAL BUSINESS AND FINANCE, 2014, 30 : 336 - 347
  • [24] ALGORITHMIC COMPLEXITY OF ALGEBRAIC SYSTEMS
    SELIVANOV, VL
    MATHEMATICAL NOTES, 1988, 44 (5-6) : 944 - 950
  • [25] ALGORITHMIC RANDOMNESS AND MEASURES OF COMPLEXITY
    Barmpalias, George
    BULLETIN OF SYMBOLIC LOGIC, 2013, 19 (03) : 318 - 350
  • [26] ON THE ALGORITHMIC COMPLEXITY OF TOTAL DOMINATION
    LASKAR, R
    PFAFF, J
    HEDETNIEMI, SM
    HEDETNIEMI, ST
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1984, 5 (03): : 420 - 425
  • [27] Algorithmic complexity in the minority game
    Mansilla, R
    PHYSICAL REVIEW E, 2000, 62 (04): : 4553 - 4557
  • [28] ALGORITHMIC COMPLEXITY OF LIST COLORINGS
    KRATOCHVIL, J
    TUZA, Z
    DISCRETE APPLIED MATHEMATICS, 1994, 50 (03) : 297 - 302
  • [29] Algorithmic Complexity of Multiplex Networks
    Santoro, Andrea
    Nicosia, Vincenzo
    PHYSICAL REVIEW X, 2020, 10 (02)
  • [30] The Complexity of Cryptocurrencies Algorithmic Trading
    Cohen, Gil
    Qadan, Mahmoud
    MATHEMATICS, 2022, 10 (12)