No-reference synthetic image quality assessment with convolutional neural network and local image saliency

被引:22
|
作者
Wang, Xiaochuan [1 ]
Liang, Xiaohui [1 ]
Yang, Bailin [2 ]
Li, Frederick W. B. [3 ]
机构
[1] Beihang Univ, State Kay Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
[2] Zhejiang Gongshang Univ, Sch Comp Sci & Informat Engn, Hangzhou 310018, Peoples R China
[3] Univ Durham, Dept Comp Sci, Durham, England
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
image quality assessment; synthetic image; depth-image-based rendering (DIBR); convolutional neural network; local image saliency; DATABASE;
D O I
10.1007/s41095-019-0131-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Depth-image-based rendering (DIBR) is widely used in 3DTV, free-viewpoint video, and interactive 3D graphics applications. Typically, synthetic images generated by DIBR-based systems incorporate various distortions, particularly geometric distortions induced by object dis-occlusion. Ensuring the quality of synthetic images is critical to maintaining adequate system service. However, traditional 2D image quality metrics are ineffective for evaluating synthetic images as they are not sensitive to geometric distortion. In this paper, we propose a novel no-reference image quality assessment method for synthetic images based on convolutional neural networks, introducing local image saliency as prediction weights. Due to the lack of existing training data, we construct a new DIBR synthetic image dataset as part of our contribution. Experiments were conducted on both the public benchmark IRCCyN/IVC DIBR image dataset and our own dataset. Results demonstrate that our proposed metric outperforms traditional 2D image quality metrics and state-of-the-art DIBR-related metrics.
引用
收藏
页码:193 / 208
页数:16
相关论文
共 50 条
  • [21] A Novel Patch Variance Biased Convolutional Neural Network for No-Reference Image Quality Assessment
    Po, Lai-Man
    Liu, Mengyang
    Yuen, Wilson Y. F.
    Li, Yuming
    Xu, Xuyuan
    Zhou, Chang
    Wong, Peter H. W.
    Lau, Kin Wai
    Luk, Hon-Tung
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (04) : 1223 - 1229
  • [22] No-Reference Image Quality Assessment with Convolutional Neural Networks and Decision Fusion
    Varga, Domonkos
    APPLIED SCIENCES-BASEL, 2022, 12 (01):
  • [23] No-reference image quality assessment based on deep convolutional neural networks
    Ravela, Ravi
    Shirvaikar, Mukul
    Grecos, Christos
    REAL-TIME IMAGE PROCESSING AND DEEP LEARNING 2019, 2019, 10996
  • [24] No-Reference Image Quality Assessment via Multibranch Convolutional Neural Networks
    Pan Z.
    Yuan F.
    Wang X.
    Xu L.
    Shao X.
    Kwong S.
    IEEE Transactions on Artificial Intelligence, 2023, 4 (01): : 148 - 160
  • [25] Saliency-guided convolution neural network-transformer fusion network for no-reference image quality assessment
    Wu, Lipeng
    Cui, Ziguan
    Gan, Zongliang
    Tang, Guijin
    Liu, Feng
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (06)
  • [26] Towards no-reference image quality assessment based on multi-scale convolutional neural network
    Ma, Yao
    Cai, Xibiao
    Sun, Fuming
    CMES - Computer Modeling in Engineering and Sciences, 2020, 123 (01): : 201 - 216
  • [27] No-Reference Stereoscopic Image Quality Assessment Using Convolutional Neural Network for Adaptive Feature Extraction
    Ding, Yong
    Deng, Ruizhe
    Xie, Xin
    Xu, Xiaogang
    Zhao, Yang
    Chen, Xiaodong
    Krylov, Andrey S.
    IEEE ACCESS, 2018, 6 : 37595 - 37603
  • [28] Towards No-Reference Image Quality Assessment Based on Multi-Scale Convolutional Neural Network
    Ma, Yao
    Cai, Xibiao
    Sun, Fuming
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2020, 123 (01): : 201 - 216
  • [29] No-reference quality assessment for neutron radiographic image based on a deep bilinear convolutional neural network
    Qiao, Shuang
    Li, Junhui
    Zhao, Chenyi
    Zhang, Tian
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2021, 1005
  • [30] Feature-segmentation strategy based convolutional neural network for no-reference image quality assessment
    Lili Shen
    Ning Hang
    Chunping Hou
    Multimedia Tools and Applications, 2020, 79 : 11891 - 11904