Johnson noise thermometry near the zinc freezing point using resistance-based scaling

被引:14
|
作者
Tew, W. L.
Labenski, J. R.
Nam, S. W.
Benz, S. P.
Dresselhaus, P. D.
Burroughs, C. J.
机构
[1] NIST, Proc Measurement Div, Gaithersburg, MD 20899 USA
[2] Natl Inst Stand & Technol, Div Optoelect, Boulder, CO 80303 USA
[3] Natl Inst Stand & Technol, Quantum Elect Metrol Div, Boulder, CO 80303 USA
关键词
ITS-90; Johnson noise; noise thermometry; temperature;
D O I
10.1007/s10765-007-0196-9
中图分类号
O414.1 [热力学];
学科分类号
摘要
Johnson noise thermometry (JNT) is a primary method of measuring temperature which can be applied over wide ranges. The National Institute of Standards and Technology (NIST) is currently using JNT to determine the deviations of the International Temperature Scale of 1990 (ITS-90) from the thermodynamic temperature in the range of 505-933 K, overlapping the ranges of both acoustic gas-based and radiation-based thermometry. Advances in digital electronics have now made viable the computationally intensive and data-volume-intensive processing required for JNT using noise-voltage correlation in the frequency domain. The spectral noise power, and consequently the thermodynamic temperature T, of a high-temperature JNT probe is determined relative to a known reference spectrum using a switched-input digital noise-voltage correlator and simple resistance-scaling relationships. Comparison of the JNT results with standard platinum resistance thermometers calibrated on the ITS-90 gives the deviation of the thermodynamic temperature from the temperature on the ITS-90, T - T-90. Statistical uncertainties under 50 mu K center dot K-1 are achievable in less than 1 day of integration by fitting the effects of transmission-line time constants over bandwidths of 450 kHz. The methods and results in a 3 K interval near the zinc freezing point (T (90-ZnFP) equivalent to 692.677 K) are described. Preliminary results show agreement between the JNT-derived temperatures and the ITS-90.
引用
收藏
页码:629 / 645
页数:17
相关论文
共 50 条
  • [1] Johnson Noise Thermometry near the Zinc Freezing Point Using Resistance-Based Scaling
    W. L. Tew
    J. R. Labenski
    S. W. Nam
    S. P. Benz
    P. D. Dresselhaus
    C. J. Burroughs
    International Journal of Thermophysics, 2007, 28 : 629 - 645
  • [2] A determination of the ratio of the zinc freezing point to the tin freezing point by noise thermometry
    Labenski, J. R.
    Tew, W. L.
    Benz, S. P.
    Nam, S. W.
    Dresselhaus, P.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2008, 29 (01) : 1 - 17
  • [3] A Determination of the Ratio of the Zinc Freezing Point to the Tin Freezing Point by Noise Thermometry
    J. R. Labenski
    W. L. Tew
    S. P. Benz
    S. W. Nam
    P. Dresselhaus
    International Journal of Thermophysics, 2008, 29 : 1 - 17
  • [4] Progress towards a determination of the indium freezing point by Johnson noise thermometry
    White, DR
    Mason, RS
    Saunders, P
    TEMPMEKO 2001: 8TH INTERNATIONAL SYMPOSIUM ON TEMPERATURE AND THERMAL MEASUREMENT IN INDUSTRY AND SCIENCE, VOL 1 & 2, PROCEEDINGS, 2002, : 129 - 134
  • [5] Resistance-based scaling of noise temperatures from 1 kHz to 1 MHz
    Labenski, John R.
    Tew, W. L.
    Nam, S. W.
    Benz, Samuel P.
    Dresselhaus, Paul D.
    Burroughs, Charles J., Jr.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2007, 56 (02) : 481 - 485
  • [6] Thermodynamic temperature of the freezing point of copper measured by noise thermometry
    Edler, F
    Tegeler, E
    Zimmermann, E
    TEMPERATURE: ITS MEASUREMENT AND CONTROL IN SCIENCE AND INDUSTRY, VOL 7, PTS 1 AND 2, 2003, 684 : 13 - 18
  • [7] Development of Resistance-Based pH Sensor Using Zinc Oxide Nanorods
    Copa, Vernalyn C.
    Tuico, Anthony R.
    Mendoza, Jamie P.
    Ferrolino, John Paul R.
    Vergara, Christopher Jude T.
    Salvador, Arnel A.
    Estacio, Elmer S.
    Somintac, Armando S.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (06) : 6102 - 6106
  • [8] A Boltzmann constant determination based on Johnson noise thermometry
    Flowers-Jacobs, N. E.
    Pollarolo, A.
    Coakley, K. J.
    Fox, A. E.
    Rogalla, H.
    Tew, W. L.
    Benz, S. P.
    METROLOGIA, 2017, 54 (05) : 730 - 737
  • [9] A New Johnson-Noise-Based Thermometry using Giant Magnetoresistive Sensor
    Liu, Xuyang
    Liu, Chunhua
    Pong, P. W. T.
    2016 5TH INTERNATIONAL SYMPOSIUM ON NEXT-GENERATION ELECTRONICS (ISNE), 2016,
  • [10] Johnson Noise Thermometry Based on Integrated Quantum Voltage Noise Source
    Urano, Chiharu
    Yamada, Takahiro
    Maezawa, Masaaki
    Yamazawa, Kazuaki
    Okazaki, Yuma
    Fukuyama, Yasuhiro
    Kaneko, Nobu-hisa
    Yamamori, Hirotake
    Maruyama, Michitaka
    Domae, Atsushi
    Tamba, Jun
    Yoshida, Shunsuke
    Kiryu, Shogo
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2016, 26 (03)