Experimental and numerical investigation of boron dilution transients in pressurized water reactors

被引:34
|
作者
Hertlein, RJ
Umminger, K
Kliem, S
Prasser, HM
Höhne, T
Weiss, FP
机构
[1] Framatome ANP GmbH, D-91050 Erlangen, Germany
[2] Forschungszentrum Rossendorf EV, Inst Safety Res, D-01314 Dresden, Germany
关键词
boron dilution; coolant mixing; PKL-; UPTF-; ROCOM-test facilities;
D O I
10.13182/NT03-A3353
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Within the pressurized water reactor (PWR) safety analyses, attention has increasingly focused in recent years on boron dilution events that could potentially lead to reactivity transients. Mixing of the low-boron water with the ambient coolant, of higher boron content provides an important mitigation mechanism before the low-boron water enters the core. Experimental support is needed to validate the computational tools to be applied to analyze the mixing of the low-boron water. Experiments were performed in the three test facilities-the Upper Plenum Test Facility (UPTF), the Primarkreislauf (PKL), and the Rossendorf coolant mixing model (ROCOM)-in Germany. The relevant PKL and UPTF tests were focused on small-break loss-of-coolant accident (SBLOCA) scenarios with reflux-condenser mode and restart of natural circulation. The two test facilities represent a typical western-type PWR and are/were operated by Siemens/KWU now Framatome ANP in Germany. While the restart of natural circulation was investigated in the PKL system test facility (volume 1:145, height 1:1), the UPTF experiments dealt with the mixing of water flows with different boron concentration in the cold legs, reactor pressure vessel (RPV) downcomer, and the lower plenum (all these components were full-scale models). The results from the PKL test facility demonstrate that in case of a postulated SBLOCA with, reflux condensation phase, natural circulation does not start up simultaneously in all loops. This means that slugs of condensate, which might have accumulated in the pump seal during reflux-condenser mode of operation, would reach the RPV at different points in time. The UPTF tests showed an almost ideal mixing of waterflows with different boron concentration in the RPV downcomer. The ROCOM test facility has been built in a linear scale of 1:5 for the investigation of coolant mixing phenomena in a wide range of flow conditions in the RPV of, the German KONVOI-type PWR. The test results presented are focused on the mixing of a slug of deborated water during the startup of the first reactor coolant pump. Based on experimentally determined pulse responses, a semianalytical model for the description of coolant, mixing inside the KONVOI RPV has been developed. Calculations for a presumed boron dilution event during the startup of the first reactor coolant pump have been carried out by means of the semianalytical model and independently by means of the computational fluid dynamics code CFX-4. The semianalytical model is able to describe the time dependent behavior of the deboration front at each fuel element position. in a good agreement with the experiment. All main mixing effects, observed in the experiment, are also reproduced by the CFX calculation.
引用
收藏
页码:88 / 107
页数:20
相关论文
共 50 条
  • [31] Investigations into experimental steam generators for secondary water chemistry in pressurized water reactors
    Gebhard, G.
    Meixler, H.H.
    Riess, R.
    1600, (63):
  • [32] TRITIUM IN PRESSURIZED WATER REACTORS
    LOCANTE, J
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1971, 14 (01): : 161 - &
  • [33] TRITIUM IN PRESSURIZED WATER REACTORS
    LANGECKE.K
    GRAUPE, H
    KERNENERGIE, 1972, 15 (05): : 165 - &
  • [34] Tribocorrosion in Pressurized Water Reactors
    Chitty, Walter-John
    Falcand, Carole
    TRIBO-CORROSION: RESEARCH, TESTING, AND APPLICATIONS, 2013, 1563 : 125 - 138
  • [35] INVESTIGATION ON SPACE DEPENDENCE OF NOISE PROCESSES IN PRESSURIZED WATER-REACTORS
    MEYER, K
    KERNENERGIE, 1977, 20 (01): : 10 - 20
  • [36] Experimental research progress of grid to rod fretting in pressurized water reactors
    Jiao, Yong-jun
    Li, Zheng-yang
    Pu, Zeng-ping
    Zheng, Mei-yin
    Ren, Quan-yao
    Cai, Zhen-bing
    Wu, Yin-wei
    Qiu, Sui-zheng
    ANNALS OF NUCLEAR ENERGY, 2023, 191
  • [37] Numerical and experimental water transients in sewer pipes - Discussion
    Pagliara, S
    Venutelli, M
    Capart, H
    Sillen, X
    Zech, Y
    JOURNAL OF HYDRAULIC RESEARCH, 1999, 37 (05) : 712 - 714
  • [38] A COMPARISON OF GADOLINIA AND BORON FOR BURNABLE POISON APPLICATIONS IN PRESSURIZED WATER-REACTORS - COMMENT
    ROTHLEDER, B
    NUCLEAR TECHNOLOGY, 1983, 63 (01) : 186 - 186
  • [39] BEST-ESTIMATE METHODOLOGY FOR ANALYSIS OF ANTICIPATED TRANSIENTS WITHOUT SCRAM IN PRESSURIZED-WATER REACTORS
    REBOLLO, L
    NUCLEAR TECHNOLOGY, 1993, 103 (01) : 49 - 65
  • [40] Numerical and Experimental Study on the Process of Filling Water in Pressurized Water Pipeline
    Hu, Jianyong
    Wang, Qingbo
    Zhang, Yuzhou
    Meng, Zhenzhu
    Zhang, Jinxin
    Fan, Jiarui
    WATER, 2023, 15 (14)