STRUCTURAL AND RECURRENCE RELATIONS FOR HYPERGEOMETRIC-TYPE FUNCTIONS BY NIKIFOROV-UVAROV METHOD

被引:0
|
作者
Cardoso, J. L. [1 ]
Fernandes, C. M. [1 ]
Alvarez-Nodarse, R. [2 ]
机构
[1] Univ Tras os Montes & Alto Douro, Dept Matemat, P-5001911 Vila Real, Portugal
[2] Univ Seville, Fac Matemat, Dept Anal Matemat, E-41080 Seville, Spain
关键词
hypergeometric-type functions; recurrence relations; classical orthogonal polynomials; RADIAL WAVE-FUNCTIONS; DIMENSIONAL OSCILLATORS; DERIVATIVES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The functions of hypergeometric-type are the solutions y = y(nu)(z) of the differential equation sigma(z)y '' + tau(z)y' + lambda y = 0, where sigma and tau are polynomials of degrees not higher than 2 and 1, respectively, and lambda is a constant. Here we consider a class of functions of hypergeometric type: those that satisfy the condition lambda + nu tau' + 1/2 nu(nu - 1)sigma '' = 0, where nu is an arbitrary complex (fixed) number. We also assume that the coefficients of the polynomials sigma and tau do not depend on nu. To this class of functions belong Gauss, Kummer, and Hermite functions, and also the classical orthogonal polynomials. In this work, using the constructive approach introduced by Nikiforov and Uvarov, several structural properties of the hypergeometric-type functions y = y(nu)(z) are obtained. Applications to hypergeometric functions and classical orthogonal polynomials are also given.
引用
收藏
页码:17 / 39
页数:23
相关论文
共 50 条
  • [11] Solution of the Dirac equation for pseudoharmonic potential by using the Nikiforov-Uvarov method
    Aydogdu, Oktay
    Sever, Ramazan
    PHYSICA SCRIPTA, 2009, 80 (01)
  • [12] Relativistic and nonrelativistic bound states of the isotonic oscillator by Nikiforov-Uvarov method
    Ikhdair, Sameer M.
    Sever, Ramazan
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (12)
  • [13] Approximate eigensolutions of the attractive potential via parametric Nikiforov-Uvarov method
    Onate, C. A.
    Adebimpe, O.
    Lukman, A. F.
    Adama, I. J.
    Okoro, J. O.
    Davids, E. O.
    HELIYON, 2018, 4 (11):
  • [14] EXACT SOLUTIONS OF DIRAC EQUATION WITH HARTMANN POTENTIAL BY NIKIFOROV-UVAROV METHOD
    Hamzavi, M.
    Hassanabadi, H.
    Rajabi, A. A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2010, 19 (11): : 2189 - 2197
  • [15] SOME SPECIAL SOLUTIONS OF BICONFLUENT AND TRICONFLUENT HEUN EQUATIONS IN ELEMENTARY FUNCTIONS BY EXTENDED NIKIFOROV-UVAROV METHOD
    Karayer, H.
    Demirhan, D.
    Buyukkilic, F.
    REPORTS ON MATHEMATICAL PHYSICS, 2015, 76 (03) : 271 - 281
  • [16] Three-body interactions and the Landau levels using Nikiforov-Uvarov method
    Bera, P. K.
    PRAMANA-JOURNAL OF PHYSICS, 2013, 81 (02): : 359 - 363
  • [17] THE SOLUTION OF THE SECOND POSCHL-TELLER LIKE POTENTIAL BY NIKIFOROV-UVAROV METHOD
    Miranda, M. G.
    Sun, Guo-Hua
    Dong, Shi-Hai
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2010, 19 (01) : 123 - 129
  • [18] Exactly modal analysis of inhomogeneous slab waveguide using Nikiforov-Uvarov method
    Motavali, H.
    Rostami, A.
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2008, 22 (5-6) : 681 - 692
  • [19] Generalized fractional of the extended Nikiforov-Uvarov method for heavy tetraquark masses spectra
    Abu-Shady, M.
    Ahmed, M. M. A.
    Gerish, N. H.
    MODERN PHYSICS LETTERS A, 2023, 38 (04)
  • [20] Polynomial solutions of the Schrodinger equation for the "deformed" hyperbolic potentials by Nikiforov-Uvarov method
    Egrifes, H
    Demirhan, D
    Büyükkiliç, F
    PHYSICA SCRIPTA, 1999, 59 (02): : 90 - 94