Dynamic Data Structures for Timed Automata Acceptance

被引:1
|
作者
Grez, Alejandro [1 ,2 ]
Mazowiecki, Filip [3 ]
Pilipczuk, Michal [3 ]
Puppis, Gabriele [4 ]
Riveros, Cristian [1 ,2 ]
机构
[1] Pontificia Univ Catolica Chile, Santiago, Chile
[2] Millennium Inst Foundat Res Data, Santiago, Chile
[3] Univ Warsaw, Warsaw, Poland
[4] Univ Udine, Udine, Italy
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Timed automata; Data stream; Dynamic data structure; O(N(2)) PROBLEMS; ALGORITHMS;
D O I
10.1007/s00453-022-01025-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study a variant of the classical membership problem in automata theory, which consists of deciding whether a given input word is accepted by a given automaton. We do so through the lenses of parameterized dynamic data structures: we assume that the automaton is fixed and its size is the parameter, while the input word is revealed as in a stream, one symbol at a time following the natural order on positions. The goal is to design a dynamic data structure that can be efficiently updated upon revealing the next symbol, while maintaining the answer to the query on whether the word consisting of symbols revealed so far is accepted by the automaton. We provide complexity bounds for this dynamic acceptance problem for timed automata that process symbols interleaved with time spans. The main contribution is a dynamic data structure that maintains acceptance of a fixed one-clock timed automaton A with amortized update time 2(O(vertical bar A vertical bar)) per input symbol.
引用
收藏
页码:3223 / 3245
页数:23
相关论文
共 50 条
  • [31] Untameable timed automata!
    Bouyer, P
    STACS 2003, PROCEEDINGS, 2003, 2607 : 620 - 631
  • [32] Shrinking timed automata
    Sankur, Ocan
    Bouyer, Patricia
    Markey, Nicolas
    INFORMATION AND COMPUTATION, 2014, 234 : 107 - 132
  • [33] Robustness in Timed Automata
    Bouyer, Patricia
    Markey, Nicolas
    Sankur, Ocan
    REACHABILITY PROBLEMS, 2013, 8169 : 1 - 18
  • [34] Minimizable timed automata
    Springintveld, J.
    Vaandrager, F.
    Lecture Notes in Computer Science, 1135
  • [35] Concuffency in timed automata
    Lanotte, R
    Maggiolo-Schettini, A
    Tini, S
    THEORETICAL COMPUTER SCIENCE, 2003, 309 (1-3) : 503 - 527
  • [36] Eventual timed automata
    D'Souza, D
    Mohan, MR
    FSTTCS 2005: FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE, PROCEEDINGS, 2005, 3821 : 322 - 334
  • [37] Timed P Automata
    Barbuti, Roberto
    Maggiolo-Schettini, Andrea
    Milazzo, Paolo
    Tesei, Luca
    FUNDAMENTA INFORMATICAE, 2009, 94 (01) : 1 - 19
  • [38] Testing timed automata
    Springintveld, J
    Vaandrager, F
    D'Argenio, PR
    THEORETICAL COMPUTER SCIENCE, 2001, 254 (1-2) : 225 - 257
  • [39] The Timestamp of Timed Automata
    Rosenmann, Amnon
    FORMAL MODELING AND ANALYSIS OF TIMED SYSTEMS (FORMATS 2019), 2019, 11750 : 181 - 198
  • [40] Testingmembership for timed automata
    Lassaigne, Richard
    de Rougemont, Michel
    ACTA INFORMATICA, 2023, 60 (04) : 361 - 384