Optical Microlensing by Primordial Black Holes with IACTs

被引:0
|
作者
Pfrang, Konstantin [1 ]
Hassan, Tarek [2 ]
Pueschel, Elisa [1 ]
机构
[1] Deutsch Elektronen Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany
[2] Ctr Invest Energet Medioambient & Tecnol CIEMAT, Ave Complutense 40, E-28040 Madrid, Spain
来源
37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021 | 2022年
关键词
STARS; HALO;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Primordial black holes (PBHs), hypothesized to be the result of density fluctuations during the early universe, are candidates for dark matter. When microlensing background stars, they cause a transient apparent enhancement of the flux. Measuring these signals with optical telescopes is a powerful method to constrain the PBH abundance in the range of 10(-10) M-circle dot to 10(1) M-circle dot. Especially for galactic stars, the finiteness of the sources needs to be taken into account. For low PBH masses (in this work less than or similar to 10(-8) M-circle dot) the average duration of the detectable event decreases with the mass < t(e)> proportional to M-PBH. For M-PBH approximate to 10(-11) M-circle dot we find < t(e)> less than or similar to 1s. For this reason, fast sampling detectors may be required as they could enable the detection of low mass PBHs. Current limits are set with sampling speeds of 2 minutes to 24 hours in the optical regime. Ground-based Imaging Atmospheric Cherenkov telescopes (IACTs) are optimized to detect the similar to ns long optical Cherenkov signals induced by atmospheric air showers. As shown recently, the very-large mirror area of these instruments provides very high signal to noise ratio for fast optical transients (<< 1 s) such as asteroid occultations. We investigate whether optical observations by IACTs can contribute to extending microlensing limits to the unconstrained mass range M-PBH < 10(-10)M(circle dot). We discuss the limiting factors to perform these searches for each telescope type. We calculate the rate of expected detectable microlensing events in the relevant mass range for the current and next-generation IACTs considering realistic source parameters.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Constraints on primordial black holes
    Carr, Bernard
    Kohri, Kazunori
    Sendouda, Yuuiti
    Yokoyama, Jun'ichi
    REPORTS ON PROGRESS IN PHYSICS, 2021, 84 (11)
  • [32] Concerning primordial black holes
    Randall, Ian
    PHYSICS WORLD, 2022, 35 (05) : 33 - 36
  • [33] Primordial black holes and inflation
    Carr, B
    CURRENT TOPICS IN ASTROFUNDAMENTAL PHYSICS, 5TH COURSE, 1997, : 306 - 321
  • [34] Primordial black holes in interferometry
    Stodolsky, L.
    MODERN PHYSICS LETTERS A, 2023, 38 (10-11)
  • [35] Prospecting for primordial black holes
    Morgan Hollis
    Nature Astronomy, 2023, 7 : 511 - 511
  • [36] On the primordial Black Holes in the earth
    Dokuchaev, VI
    Volkova, LV
    SPACE SCIENCE REVIEWS, 1995, 74 (3-4) : 467 - 470
  • [37] Extreme primordial black holes
    Chongchitnan, Sin
    Chantavat, Teeraparb
    Zunder, Jenna
    ASTRONOMISCHE NACHRICHTEN, 2021, 342 (04) : 648 - 657
  • [38] Renormalized primordial black holes
    Franciolini, G.
    Ianniccari, A.
    Kehagias, A.
    Perrone, D.
    Riotto, A.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (11):
  • [39] Clusters of Primordial Black Holes
    Belotsky, Konstantin M.
    Dokuchaev, Vyacheslav I.
    Eroshenko, Yury N.
    Esipova, Ekaterina A.
    Khlopov, Maxim Yu.
    Khromykh, Leonid A.
    Kirillov, Alexander A.
    Nikulin, Valeriy V.
    Rubin, Sergey G.
    Svadkovsky, Igor V.
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (03):
  • [40] Primordial rotating black holes
    Pacheco, J. A. de Freitas
    Silk, Joseph
    PHYSICAL REVIEW D, 2020, 101 (08)