Practical modified scheme of linear shallow-water equations for distant propagation of tsunamis

被引:43
|
作者
Cho, Yong-Sik [1 ]
Sohn, Dae-Hee [1 ]
Lee, Seung Oh [1 ]
机构
[1] Hanyang Univ, Dept Civil Engn, Seoul 133791, South Korea
关键词
tsunami; linear shallow-water equations; linear Bossinesq equations; frequency dispersion effects; leap-frog scheme; Gaussian hump;
D O I
10.1016/j.oceaneng.2006.08.014
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
A simple but practical numerical model describing a distant propagation of tsunamis is newly proposed by introducing an additional term to the existing modified scheme. The numerical dispersion of the proposed model is manipulated to replace the physical dispersion of the linear Boussinesq equations without any limitation. The new model developed in this study is applied to propagation of a Gaussian hump over a constant water depth and the predicted free surface displacements are compared with available analytical solutions. A very reasonable agreement is observed. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1769 / 1777
页数:9
相关论文
共 50 条
  • [21] A gas-kinetic scheme for shallow-water equations with source terms
    Tang, HZ
    Tang, T
    Xu, K
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2004, 55 (03): : 365 - 382
  • [22] Central WENO scheme for the integral form of contravariant shallow-water equations
    Gallerano, F.
    Cannata, G.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 67 (08) : 939 - 959
  • [23] A gas-kinetic scheme for shallow-water equations with source terms
    Huazhong Tang
    Tao Tang
    Kun Xu
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2004, 55 : 365 - 382
  • [24] ACCURACY AND STABILITY ANALYSIS OF A FULLY IMPLICIT SCHEME FOR THE SHALLOW-WATER EQUATIONS
    YAKIMIW, E
    ROBERT, A
    MONTHLY WEATHER REVIEW, 1986, 114 (01) : 240 - 244
  • [25] Modified time splitting scheme for shallow water equations
    Bourchtein, Andrei
    Bourchtein, Ludmila
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2006, 73 (1-4) : 52 - 64
  • [26] SHALLOW-WATER PROPAGATION IN ARCTIC OCEAN
    HUNKINS, K
    KUTSCHALE, H
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1963, 35 (04): : 542 - &
  • [27] FILTERING OF MODES IN SHALLOW-WATER PROPAGATION
    GAZANHES, C
    GARNIER, JL
    ACUSTICA, 1986, 59 (03): : 230 - 232
  • [28] Asymptotic solutions of the linear shallow-water equations with localized initial data
    S. Yu. Dobrokhotov
    R. V. Nekrasov
    B. Tirozzi
    Journal of Engineering Mathematics, 2011, 69 : 225 - 242
  • [29] Asymptotic solutions of the linear shallow-water equations with localized initial data
    Dobrokhotov, S. Yu.
    Nekrasov, R. V.
    Tirozzi, B.
    JOURNAL OF ENGINEERING MATHEMATICS, 2011, 69 (2-3) : 225 - 242
  • [30] Asymptotic solutions of the linear shallow-water equations with localized initial data
    Dobrokhotov, S. Yu.
    Nekrasov, R.V.
    Tirozzi, B.
    Journal of Engineering Mathematics, 2011, 69 (03) : 225 - 242