Phase transition and electrical properties of Bi0.5(Na0.8K0.2)0.5ZrPO3 modified (K0.52Na0.48)(Nb0.95Sb0.05)O3 lead-free piezoelectric ceramics

被引:19
|
作者
Liu, Baihui [1 ]
Zhang, Yang [1 ]
Li, Peng [1 ]
Shen, Bo [1 ]
Zhai, Jiwei [1 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Funct Mat Res Lab, Key Lab Adv Civil Engn Mat,Minist Educ, 4800 Caoan Rd, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金;
关键词
KNN-based ceramics; BNKZ modification; Multiphase coexistence; Electrical properties; FERROELECTRIC PROPERTIES; SYSTEM; DEPENDENCE; LI;
D O I
10.1016/j.ceramint.2016.05.186
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, (1 - x)(K0.52Na0.48)Nb0.95Sb0.05O3 - xBi(0.5)(Na0.8K0.2)(0.5)ZrO3 [abbreviated as (1 - x) KNNS xBNKZ, x=0-0.06] lead-free ceramics were fabricated using solid-state reaction method. The effects of BNKZ contents on the phase structure, piezoelectric and ferroelectric properties were investigated. The phase boundaries including orthorhombic-tetragonal (0-T) and rhombohedral-tetragonal (R-T) multiphase coexistence were identified by XRD patterns and temperature-dependent dielectric constant by adding different content of BNKZ. A giant field induced strain (similar to 0.25%) along with converse piezoelectric coefficient d(33)* (similar to 629.4 pm/V) and enhanced ferroelectricity P-r (similar to 38 mu C/cm(2)) were obtained when x=0.02, while the specimen with x=0.03 presented the optimal piezoelectric coefficient d(33) of 215 pC/N, due to the O-T or R-T phase coexistence near room temperature respectively. These results show that the introduction of Bi-0.5(Na0.8K0.2)(0.5)ZrO3 is a very effective way to improve the electrical properties of (K0.52Na0.48)(Nb0.95Sb0.05)O-3 lead-free piezoelectric ceramics. (C) 2016 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:13824 / 13829
页数:6
相关论文
共 50 条
  • [21] Phase transition and electrical properties of (K0.5Na0.5)(Nb1-xTax)O3 lead-free piezoelectric ceramics
    Lin, Dunmin
    Kwok, K. W.
    Chan, H. L. W.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2008, 91 (01): : 167 - 171
  • [22] Study on the strain behavior and piezoelectric properties of lead-free Bi0.5(Na0.8K0.2)0.5TiO3 ceramics modified with Sn4+ ions
    Truong-Tho, Nguyen
    Le Vuong, Dai
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (12) : 16601 - 16611
  • [23] Phase transition and energy storage properties of BaTiO3-modified Bi0.5(Na0.8K0.2)0.5TiO3 ceramics
    Ghosh, S. K.
    Chauhan, V.
    Hussain, Ali
    Rout, S. K.
    FERROELECTRICS, 2017, 517 (01) : 97 - 103
  • [24] Phase transition and electrical properties of (K0.5Na0.5)(Nb1-xTax)O3 lead-free piezoelectric ceramics
    Dunmin Lin
    K.W. Kwok
    H.L.W. Chan
    Applied Physics A, 2008, 91 : 167 - 171
  • [25] Dielectric and piezoelectric properties of (Na0.8K0.2)0.5Bi0.5TiO3 ceramics
    Li, YM
    Chen, W
    Xu, Q
    Zhou, J
    Liao, MS
    JOURNAL OF INORGANIC MATERIALS, 2004, 19 (04) : 817 - 822
  • [26] Influence of calcination temperature on piezoelectric properties of 0.95(K0.52Na0.48)NbO3-0.05LiTaO3 lead-free piezoelectric ceramics
    Shin, Dong-Jin
    Koh, Jung-Hyuk
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2012, 61 (06) : 942 - 946
  • [27] Influence of calcination temperature on piezoelectric properties of 0.95(K0.52Na0.48)NbO3-0.05LiTaO3 lead-free piezoelectric ceramics
    Dong-Jin Shin
    Jung-Hyuk Koh
    Journal of the Korean Physical Society, 2012, 61 : 942 - 946
  • [28] Influence of NaNbO3 addition to Bi0.5(Na0.8K0.2)0.5TiO3 lead-free ceramics on the energy storage properties
    Wang, L. G.
    Su, X. F.
    Zhu, C. M.
    Yu, G. B.
    Huang, R. T.
    SOLID STATE COMMUNICATIONS, 2023, 371
  • [29] Influence of Dy3+ doping on the luminescent and piezoelectric properties of bifunctional (K0.48Na0.52) (Nb0.95Sb0.05) O3 based lead-free piezoceramics
    Cui, Ruoying
    Zhu, Dachuan
    Tang, Ke
    Yue, Cheng
    OPTIK, 2020, 207
  • [30] Structure and electrical properties of Bi0.5(Na, K)0.5TiO3-BiGaO3 lead-free piezoelectric ceramics
    Zhou, Changrong
    Liu, Xinyu
    Li, Weizhou
    Yuan, Changlai
    Chen, Guohua
    CURRENT APPLIED PHYSICS, 2010, 10 (01) : 93 - 98